Tổng sau có là số chính phương hay không :10100+1050+1
§11. SỐ CHÍNH PHƯƠNG
Bài 1. Điền số tiếp theo vào dấu chấm :
a) 1, 9, 25, 49,... b) 3, 7, 12, 19, ... c) 0, 4, 16, 36, ...... d) 10, 40, 90, 52, 63, 94,......
Bài 2. Trong các số sau, số nào là số chính phương: a) 22022 b) 32021 c) 42019 d) 1945 2 29
Bài 3. a) Tìm số chính phương có 4 chữ số khác nhau được tạo bởi các chữ số 4, 0, 2, 3,
b) Tìm số chính phương có bốn chữ số, được viết bởi các chữ số 3, 6, 8, 8.
c) Tìm số chính phương có 4 chữ số khác nhau tạo bởi từ 4 chữ số 2; 3; 4; 9.
Bài 4. Tìm số có hai chữ số, biết rằng nếu nhân nó với 135 thì ta được một số chính phương.
Bài 5. Các tổng sau có phải số chính phương không ? Tại sao ?
A = 3 + 32
+ 33
+ ... +320 B = 11 + 112
+ 113
+ 114
+ 115
;
C = 11 + 112
+ 113
D = 1122 + 1133 + 1144
.
E = 1010 + 8 F = 100! + 7
G = 1010 + 5 H= 10100 + 1050 + 1
Nhập n số nguyên từ bàn phím in ra màn hình tổng các số chính phương, kiểm tra 1 số có phải là số chính phương hay không, sau đó cộng lại
vì sao số chính phương không tận cùng bởi các chữ số 2,3,7,8
tổng (hiệu) sau có là số chính phương hay không
3.5.7.9.11+3 ; 2.3.4.5.6-3
a)Vì số tự nhiên có các chữ số tận cùng laf0;1;2;3;....;9.
Mà số chính phương bằng bình phương của các số tự nhiên
Số chính phương có các chữ số tận cùng là 0;1;4;5;9;6
b)không phải là số chính phương
chứng minh A = 10100 + 6 không phải là số chính phương
Tổng sau có là số chính phương hay không: 3+3^2+3^3+...+3^20
Aj giải sớm mình cho 1 like
Đặt : A = 3 + 32 + 33 + 34 + . . . + 320
Mà 3 chia hết cho 3 ; 32 chia hết cho 3 ; . . . ; 320 chia hết cho 3
=> A chia hết cho 3
3 không chia hết cho 32
32 chia hết cho 32 ; 33 chia hết cho 32 ; . . . ; 320 chia hết cho 32
=> A không chia hết cho 32
Mà A chia hết cho 3 nhưng A ko chia hết cho 32 nên A ko chính phương .
Các tổng sau có phải là số chính phương hay không 1010+5
Có , nó là bình phương của 100000
Cho tổng S=1+3^1+3^2+3^3+....+3^30. S là số chính phương hay không phải là số chính phương?
Tổng bình phương của 1974 số tự nhiên liên tiếp có phải là số chính phương hay không
Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)
<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)
= \(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)
=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương
Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
n2+(n+1)2+(n+2)2+...+(n+1973)2
<=>[n2+(n+1)2+(n+3)2]+....+[(n+1971)2+(n+1972)2+(n+1973)2]
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
(3k1+2)+(3k2+2)+...+(3k658+2)
= 3.(k1+k2+k3+...+k658)+2.658
=3.(k1+k2+k3+...+k658)+1316chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương
Tổng A = 1! +2! +3! +4! +......+2017! có phải là số chính phương hay không ?Tại Sao?
Ta có 1! + 2! + 3! + 4! = 33
những giai thừa từ 5! trở lên đều có tận cùng là 0 (vì đều chia hết cho 10)
=> 1! + 2! + 3! + ... + 2017! có tận cùng là 3
Vì không có số chính phương nào có tận cùng là 3, nên 1! + 2! + 3! + 4! + ...+ 2017! không phải là số chính phương