chứng minh rằng: a/a(n+a)=1/n-1/n+a (n,a thuộc N*)
chứng minh rằng: a/a(n+a)=1/n-1/n+a (n,a thuộc N*)
chứng minh rằng a/n(n+a) =1/n -1/n+a (n ,a thuộc N*)
Tính A= 1/2.3 +1/3.4+..........+1/99.100
\(\frac{a}{n\left(n+a\right)}\)
=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)
=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)
Rút gọn, ta được:
\(\frac{1}{n}\)\(-\frac{1}{n+a}\)
=>đpcm
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
A=\(\frac{1}{2}-\frac{1}{100}\)
A=\(\frac{50}{100}-\frac{1}{100}\)
A=\(\frac{49}{100}\)
Chứng minh rằng:
a/n(n+a) = 1/n - 1/n-a (Với a;n thuộc N* )
Chứng minh rằng:
a/n(n+a) = 1/n - 1/n-a (Với a;n thuộc N* )
Chứng minh rằng tích của 2 phân số trên bằng hiệu của chúng.
2.Chứng minh rằng 1/a=1/(a+1)+1/[a(a=1)] với a thuộc Z, a khác 0 và a khác -1.
1. chứng minh
a) cho biểu thức A = 5 /n-1 ; (n thuộc Z)
tìm điều kiện của n để A là phân số ? Tìm tất cả giá trị nguyên của n để A là số nguyên ?
b)Chứng minh phân số n / n + 1 tối giản; ( n thuộc N và n khác 0)
c) chứng tỏ rằng : 1/1x2 +1/2x3 + 1/3x4 + .........+ 1/49x50 <1
Chứng minh rằng: \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)(n,a thuộc N*)
\(\frac{1}{n}-\frac{1}{n +a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
chứng minh rằng :
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)(a,n thuộc N*)
Ta có: \(\frac{a}{n\left(n+a\right)}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{\left(n+a\right)}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)
\(=\frac{1}{n}-\frac{1}{n+a}\)
chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1
chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1