Những câu hỏi liên quan
DN
Xem chi tiết
NA
27 tháng 6 2016 lúc 15:19

Hỏi đáp Toán

Bình luận (0)
H24
Xem chi tiết
HT
13 tháng 8 2018 lúc 19:24

Ta có :\(\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{601.607}\right)\)\(\ne0\)

\(\Rightarrow x=0\)

Bình luận (0)
ND
13 tháng 8 2018 lúc 19:27

\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+......+\frac{5}{601.607}\right)=0\)

\(\Rightarrow X:\left(\frac{5}{1}-\frac{5}{7}+\frac{5}{7}-\frac{5}{13}+\frac{5}{13}+......+\frac{5}{601}-\frac{5}{607}\right)=0\)

\(\Leftrightarrow X:\left(5-\frac{5}{607}\right)=0\)

\(\Leftrightarrow X:\frac{3030}{607}=0\)

\(\Leftrightarrow X=0\)

CÁCH 2:\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)=0\)

\(\Leftrightarrow X=0.\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)\)

\(\Leftrightarrow X=0\)

Bình luận (0)
DA
Xem chi tiết
WR
15 tháng 6 2015 lúc 20:38

G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )

=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)

=6(1-n/n+6)

=6.6/n+6

=36/n+6

vậy G=36/n+6

Bình luận (0)
PN
Xem chi tiết
QM
Xem chi tiết
H24
4 tháng 5 2023 lúc 21:06

a/\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(=\dfrac{1}{3}\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{1018}{1019}\)
\(=\dfrac{1018}{3057}\)
b/\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(=\dfrac{7}{8}\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\cdot\dfrac{2018}{2019}\)
\(=\dfrac{7063}{8076}\)

Bình luận (1)
H24
4 tháng 5 2023 lúc 21:46

a) Ta có :

\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)

\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)

\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)

\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{1019}\right)\)

\(\Rightarrow C=\dfrac{1}{3}.\dfrac{1018}{1019}\)

\(\Rightarrow C=\dfrac{1018}{3057}\)

b) Ta có:

\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)

\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)

\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)

\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{2019}\right)\)

\(\Rightarrow D=\dfrac{7}{8}.\dfrac{2018}{2019}\)

\(\Rightarrow D=\dfrac{7063}{8076}\)

Bình luận (1)
TA
Xem chi tiết
CG
Xem chi tiết
TT
Xem chi tiết
H24
20 tháng 6 2017 lúc 10:38

\(M=\frac{16}{1.5}+\frac{16}{5.9}+........+\frac{16}{2017.2021}\)

\(M=4.\left(\frac{4}{1.5}+\frac{4}{5.9}+.......+\frac{4}{2017.2021}\right)\)

\(M=4.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.........+\frac{1}{2017}-\frac{1}{2021}\right)\)

\(M=4.\left(1-\frac{1}{2021}\right)\)

\(M=4.\frac{2020}{2021}\)

\(M=\frac{8080}{2021}\)

\(N=\frac{1}{1.7}+\frac{1}{7.13}+.......+\frac{1}{2007.2013}\)

\(N=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+........+\frac{6}{2007.2013}\right)\)

\(N=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+......+\frac{1}{2007}-\frac{1}{2013}\right)\)

\(N=\frac{1}{6}.\left(1-\frac{1}{2013}\right)\)

\(N=\frac{1}{6}.\frac{2012}{2013}\)

\(N=\frac{1006}{6039}\)

Bình luận (0)
ND
20 tháng 6 2017 lúc 10:33

\(N=\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{2007.2013}\)

\(N=\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{2007}-\frac{1}{2013}\)

\(N=1-\frac{1}{2013}\)

\(N=\frac{2012}{2013}\)

Bình luận (0)
H24
Xem chi tiết