cmr : Nếu a + b = c + d và a^2 + b^2 = c^2 + d^2
Thì a^2014 + b^2014 = c^2014 + d^2014
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a b c d thuộc z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2 CMR a^2014+b^2014=c^2014+d^2014
Ta có: a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
+) Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2014 = c2014 và d2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (1)
+) Nếu a \(\ne\) c
=> a - c = d - b (khác 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + c (2)
Mà a + b = c + d (3)
Lấy (2) + (3) ta được:
2a + b + c = 2d + b + c
=> 2a = 2d
=> a = d
=> c = b
=> a2014 = d2014 và c2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (4)
Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)
Cho cac so nguyen a,b,c,d thoa man : a + b = c + d và a^2 + b^2 = c^2 + d^2. CMR : a^2014 + b^2014 = c^2014 d^2014
Cho cac so nguyen a,b,c,d thoa man : a + b = c + d và a^2 + b^2 = c^2 + d^2. CMR : a^2014 + b^2014 = c^2014 d^2014
cho a/b=c/d ;a^2+b^2=c^2+d^2
CMR a^2014+b^2014=c^2014+d^2014
cho các số nguyên a,b,c,d thoa mãn a+b=c+d và \(a^2+b^{^2}=c^2+d^2\)
CMR: \(a^{2014}+b^{2014}=c^{2014}+d^{2014}\)
1. Cho các số nguyên a, b, c, d thỏa mãn:
a+b=c+d và \(a^2+b^2=c^2+d^2\)
CMR: \(a^{2014}+b^{2014}=c^{2014}+d^{2014}\)
CMR : Nếu \(\dfrac{a}{b}=\dfrac{c}{d}th\text{ì}\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
CMR: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\\ \dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}\\ \left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}=\dfrac{b^{2014}}{d^{2014}}\\ \RightarrowĐPCM\)
CMR: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\left(\dfrac{a-b}{c-d}\right)^{2014}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Xét \(VT=\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\left(1\right)\)
Xét \(VP=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{b^{2014}k^{2014}+b^{2014}}{d^{2014}k^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM