Những câu hỏi liên quan
NP
Xem chi tiết
CH
29 tháng 4 2016 lúc 8:59

Ta có: \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=1-\frac{2}{x+1}=\frac{2009}{2011}\)

\(\Rightarrow x=2010\).

Chúc em học tập tốt :)

Bình luận (0)
NP
29 tháng 4 2016 lúc 12:00

ta có cái gì vậy chị huyền

Bình luận (0)
TN
14 tháng 5 2016 lúc 5:53

ta lấy từng phân số nhân với 2 rùi đặt 2 ra ngoài

khử liên tiếp ra đc kq như thế hiểu chưa Nguyễn Lâm Phương

Bình luận (0)
LU
Xem chi tiết
LU
Xem chi tiết
TN
14 tháng 5 2016 lúc 5:55

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{2011}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\frac{1}{x+1}=\frac{1}{2011}\)

=>x+1=2011

=>x=2010

Bình luận (0)
LM
Xem chi tiết
HS
18 tháng 6 2019 lúc 21:43

\(a,1+3+5+7+...+x=330\)

SSH : \((x-1):1+1=x\)

Tổng : \(\frac{(1+x)\cdot x}{2}\)

Áp dụng phương pháp đó rồi làm thôi :v

Mấy bài kia cũng tương tự như thế thui

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
LC
Xem chi tiết
LF
14 tháng 10 2016 lúc 11:07

\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)

\(\Leftrightarrow x+1=2011\)

\(\Leftrightarrow x=2010\)

Bình luận (1)
TT
14 tháng 10 2016 lúc 11:15

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(1-\frac{2}{x+1}=\frac{2009}{2011}\)

\(\frac{2}{x+1}=1-\frac{2009}{2011}\)

\(\frac{2}{x+1}=\frac{2}{2011}\)

\(x+1=2011\)

\(x=2011-1\)

\(\Rightarrow x=2010\)

 

Bình luận (1)
HK
Xem chi tiết
LT
Xem chi tiết
AH
22 tháng 6 2023 lúc 17:19

Đề có vấn đề. Bạn coi lại.

Bình luận (0)