tìm các số tự nhiên a,b biết:
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Các bạn ơi giúp mk với:
Cho \(M=\frac{1}{7+\frac{1}{5+\frac{1}{3+\frac{1}{2}}}}+\frac{1}{9+\frac{1}{8+\frac{1}{7+\frac{1}{6}}}}\) và \(N=\frac{1}{3+\frac{1}{5+\frac{1}{7+\frac{1}{a+\frac{1}{b}}}}}\)
a) Tính giá trị của M viết dưới dạng phân số
b) Tìm các số tự nhiên a,b biết \(N=\frac{3655}{11676}\)
a) \(M=\frac{211241}{849338}\)
b) a = 9; b = 11
1. Tìm số tự nhiên nhỏ nhất, biết số đó chia cho 3,4,5,6 đều dư 2, còn chia cho 7 thì dư 3.
2. Tìm 2 số tự nhiên biết tổng ƯCLN và BCNN của chúng bằng 23.
3. Tìm các số tự nhiên a,b thỏa mãn:\(\frac{5a+7b}{6a+5b}=\frac{29}{28}\)và (a,b)=1
Tìm các số tự nhiên a và b biết rằng:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\left(b-a=2\right)\)
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{2}{3}\)
<=> \(\frac{2}{ab}=\frac{2}{3}\)
<=> ab = 3
Nên : a,b thuộc Ư(3) = {1;3}
Mà b - a = 2
Vậy a = 1 thì b = 3
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{2}{ab}=\frac{2}{3}\Rightarrow ab=3\)
Tới đây giải hiệu tích
a(a+2) = 3
=> a2 + 2a = 3
=> a2 + 2a - 3 = 0
=> a2 - a + 3a - 3 = 0
=> a(a-1) + 3(a-1) = 0
=> (a+3)(a-1) = 0
=> a = -3 hoặc a = 1
Vì a là số tự nhiên nên a = 1
=> b = 3
Vậy (a,b) = (1,3)
a, Tìm các số tự nhiên a,b sao cho :\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
b, Tìm các số tự nhiên a,b,c sao cho: \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
c, Tìm các chữ số a,b,c khác nhau sao cho: a,bc:(a+b+c)=0,25
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
tìm các số tự nhiên a,b,c sao cho a^2 <=b;b^2<=c;c^2<=a
Tìm các số tự nhiên a,b,c,d biết:
\(\frac{30}{13}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
cai nay minh tinh ko ra
giúp mình
tìm các số tự nhiên a,b,c biết
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
tìm các chữ số a,b,c khác nhau biết
\(\overline{a,bc}\div\left(a+b+c\right)=0,25\)
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)
mà a,b là số tự nhiên nên \(a,b\ge0\)
nên \(9a+4b\ge0\)
dấu bằng xảy ra khi a=b=0
tìm các số tự nhiên a,b,c,d biết:\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
Ta có:
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)
\(=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\Rightarrow a=1;b=2;c=3;d=4\)
Tìm các số tự nhiên a,b,c biết: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
tìm các số tự nhiên a,b,c,d,biết\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)\(\frac{ }{ }\)
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.