Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
LT
27 tháng 12 2015 lúc 10:27

Đặt :n^2+2006=a^2(a thuoc Z)

=>2006=a^2-n^2=(a-n)(a+n)       (1)

Mà : (a+n)-(a-n)=2n chia het cho 2 

=>a+n và a-n có cùng ính chẵn lẻ 

TH1:a+n và a-n cùng lẻ =>(a-n)9a+n) lẻ , trái với        (1)

TH2:a+n và a-n cùng chẵn => (a-n)(a+n) chia het cho 4 , trái với     (1)

Vậy ko co n thoa man n^2+2006 la so chinh phuong 

**** 

Bình luận (0)
DA
Xem chi tiết
TM
16 tháng 4 2016 lúc 9:31

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

Bình luận (0)
SL
16 tháng 4 2016 lúc 9:31

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Bình luận (0)
DH
16 tháng 4 2016 lúc 9:40

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 1 2017 lúc 12:49

n=1

n=3

Bình luận (0)
H24
Xem chi tiết
DT
15 tháng 4 2017 lúc 20:01

ta có:

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0

do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Bình luận (0)
PL
Xem chi tiết
PL
2 tháng 4 2021 lúc 23:23

help me

Bình luận (0)
 Khách vãng lai đã xóa
MW
Xem chi tiết
DH
12 tháng 11 2019 lúc 19:39

Gọi n2 + 2006 = a[ a thuộc N]

=> 2006 = a- n2 = [ a - n ] . [ a + n ][ 1 ]

Mà [ a + n ] - [ a - n ] = 2n chia hết cho 2

=> a + n và a - n có chung tính chẵn lẻ 

a + n và a - n cùng lẻ => [ a-n ] . [ a + n ] lẻ trái với [ 1 ]

a + n và a - n cùng chẵn => [ a - n ] . [ a + n ] chia hết cho 4 mà 2006 không chia hết cho 4 

Vậy không có n thỏa mãn để n2 + 2006 là số chính phương

Chúc bạn học tốt 

Mình chỉ biết làm thê thôi , nếu sai mong mọi người bỏ qua cho

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TH
14 tháng 9 2015 lúc 18:09

Có phải bài này là điều kiện đồng thời đúng không??

Ta nhận thấy n phải là số tự nhiên 

Giống như bài dưới ta cũng sử dụng tính chất của số chính phương 

Một số chính phương chia 4 chỉ dư 0 hoặc 1

Tự chứng minh.........

Với n>1 ta có 2n chia hết cho 4 mà 15 chia 4 dư 3 nên 2n+15 chia 4 dư 3 không là số chính phương

Vậy n=0 hoăc n=1 ta thấy n=0 thỏa mãn cả hai cái

Vậy n=0 để ......

 

Bình luận (0)