tính nhanh A=2009/1.2+2009/2.3+2009/3.4+.............+2009/2008.2009
Tính nhanh:
A = 2009/1.2 + 2009/2.3 + 2009/3.4 + ... + 2009/2008.2009
a=2009(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.........+1/2008-1/2009)
=2009x2008/2009
=2008
Thực hiện phép tính
-1-(1+2)-(1+2+3)-...-(1+2+3+...+2009+2010)/1.2+2.3+3.4+...+2010.2011
a) Đặt S(n)=1.2+2.3+3.4+...+n(n+1). Tính S(100) và S(2009).
b)Đặt P(n)=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2).Tính P(100) và P(2009).
b) Giải:
Ta có: \(k\left(k+1\right)\left(k+2\right)\)
\(=\dfrac{1}{4}\left[k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\left(k-1\right)k\left(k+1\right)\left(k+2\right)\right]\)
Do đó: \(P=\dfrac{1}{4}.n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Thay vào ta tính được:
\(P\left(100\right)=26527650;P\left(2009\right)=\dfrac{1}{4}.2009.2010.2011.2012\)
Mà: \(\dfrac{1}{4}.2009.2010.2011=2030149748\)
Và \(149748.2012=3011731776;2030.2012.10^6=4084360000000\)
Cộng lại ta có: \(P\left(2009\right)=4087371731776\)
1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2009/2010
tìm x
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2009}{2010}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Rightarrow x+1=2010\)
\(\Rightarrow x=2010-1\)
\(\Rightarrow x=2009\)
Vậy x = 2009
=> 1-1/2+1/2-1/3+1/3- 1/4 +... +1/x -1/x+1 = 2009/1020
=> 1 - 1/x+1=2009/2010
=> (x+1-1)/x+1=2009/2010
=> x/x+1=2009/2010
=>x=2009
Tìm x
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
phúc hơi phức tạp
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=1-\frac{2008}{2009}\)
\(\frac{1}{x+1}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(x=2009-1\)
\(x=2008\)
Vậy \(x=2008\)
Tự làm bước biến đổi nhé tui lm lẹ luôn =v
\(\frac{1}{1}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(=>x=2008\)
Vậy x = 2008
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2008}{2009}\Leftrightarrow\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\frac{x}{x+1}=\frac{2008}{2009}\Leftrightarrow2009x=2008x+2008\Leftrightarrow x=2008\)
So sánh A và B biết: a=2006/2007-2007/2008-2008/2009-2009/2010 và B= -1/2006.2007-1/2008.2009
so sánh 2006/2007-2007/2008+2008/2009-2009/2010 và -1/2006.2007+-1/2008.2009
Tính nhanh:
a,1/2009+2/2009+3/2009+......2008/2009
b,2010*2010*20092009-2009*2009*20102010/2009*20052005
a, \(\frac{1}{2009}+\frac{2}{2009}+...+\frac{2008}{2009}\\ \frac{\left(1+2008\right)\cdot2008\div2}{2009}=\frac{2017036}{2009}\)
So sánh
M=2006/2007 - 2007/2008 + 2008/2009 - 2009/2010
N= -1/2006.2007 - 1/2008.2009