Những câu hỏi liên quan
HK
Xem chi tiết
HK
Xem chi tiết
NM
Xem chi tiết
H24
1 tháng 5 2018 lúc 10:19

ta có A.B=1+1+1+...+1=202.1=202

vậy C=202

Bình luận (0)
TT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
BM
Xem chi tiết
MC
17 tháng 5 2018 lúc 19:12

a)

Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)

Cần nhớ:

Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

Và tương tự:  \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

b)Ta có:

 \(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)

\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)

Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)

c) Ta có:

\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)

\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)

=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

Bình luận (0)
DL
Xem chi tiết
H24
18 tháng 4 2015 lúc 15:56

a/ Do : 2009/2010 > 2009/2011, 2009/2011 < 2010/2011 nên 2009/2010 < 2010/2011

                                   1 đúng

Bình luận (0)
TN
25 tháng 4 2016 lúc 16:37

Ta có: 200/201+201/202>200+201/202          (1)

200+201/201+202<200+201/202                   (2)

từ (1) và (2) suy ra 200/201+201/202>200+201/201+202

Bình luận (0)
NT
8 tháng 4 2017 lúc 9:34

biết làm câu đ ko bạn Đỗ Hà Khánh Linh

Bình luận (0)
PT
Xem chi tiết
NM
16 tháng 3 2016 lúc 17:31

Câu a bạn so sánh phần bù

Kết quả là 2009/2010<2010/2011

Câu b tách veesphair ra thành 200/403+201/403

Vì 200/201>200/403 và 201/202>202/403 nên Kết quả là >

Câu c thì phải biến đổi

Câu cuối quá dễ

Bình luận (0)