tìm giá trị tuyệt đối lớn nhất của biểu thức sau:A=2014-|x-2013|
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Tính giá trị lớn nhất của A=2014- giá trị tuyệt đối của (x-2013)
tìm giá trị nhỏ nhất của biểu thức
P= giá trị tuyệt đối của hiệu x-2012 + giá trị tuyệt đối của hiệu x-2013
Ta có : P = |x - 2012| + |x - 2013| = |x - 2012| + |2013 - x| \(\ge\)|x - 2012 + 2013 - x| = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\2013\ge x\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)
Vậy Min P = 1 <=> \(2012\le x\le2013\)
ta có p=/x-2012/+/x-2013/
=>p=/x-2012/+/2013-x/
ÁP DỤNG BẤT Đẳng THỨC /A/+/B/>,=/A+B/
=>/x-2012/+/2013-x/>=/x-2012+2013-x/=1
hay p>=1
dấu bằng xảy ra khi và chỉ khi /x-2012/x/2013-x/>=0
xét x-2012=0=>x=2012
2013-x=0=>x=2013
lập bảng xét dấu các giá trị của biểu thức x-2012 và 2013-x
x | 2012 | 2013 | |||
x-2012 | - | 0 | + | / | + |
2013-x | + | / | + | 0 | - |
(x-2012)*(2013-x) | - | 0 | + | 0 | - |
=>2012=<x<=2013
vậy gtnn của p là 1 khi và chỉ khi 2012=<x=<2013
tìm GTNN của biểu thức sau ; trị tuỵệt đối của x -2013 + trị tuyệt đối của x-2014 +trị tuyệt đối của x-2015
Ta thay |x-2013|;|x-2014|;|x-2015| >=0 voi moi x thuoc R
Dau = xay ra khi x-2013+x-2014+x-2015=0
3x+(-2013+-2014+-2015)=0
3x+(-6042)=0
3x=6042
x=2014
Vay Gttd cua bt tren la 0 khi x=2014
tìm giá trị nhỏ nhất của biểu thức
A=giá trị tuyệt đố của x-2014+ giá trị tuyệt đối của x-2
mai mình kiểm tra bạn giải hộ mình nhé
a) Tìm giá trị nhỏ nhất của biểu thức 4+ giá trị tuyệt đói của x-2/5
b) Tìm giá trị lớn nhất của biểu thức 2- giá trị tuyệt đối của 1/5-x
1.Tìm nghiệm nguyên dương của phương trình x+y+z=xyz
2.tìm giá trị nhỏ nhất của biểu thức A=giá trị tuyệt đối của 2x+2 cộng với giá trị tuyệt đối của 2x-2013
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
\(A=\left|2x+2\right|+\left|2x-2013\right|=\left|2x+2\right|+\left|2013-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)với \(ab\ge0\)
=>\(A=\left|2x+2\right|+\left|2013-2x\right|\ge\left|2x+2+2013-2x\right|=2015\)
với \(\left(2x+2\right)\left(2013-2x\right)\ge0\)
=>\(A_{min}=2015\) với \(-0,5\le x\le1006,5\)
tìm giá trị nhỏ nhất
B =giá trị tuyệt đối của x- 2 + 34
tìm giá trị lớn nhất của biểu thức C = 2001 - giá trị tuyệt đối của x + 3
1, Ta có: \(\left|x-2\right|\ge0\)
=>\(B=\left|x-2\right|+34\ge34\)
Dấu "=" xảy ra khi x=2
Vậy GTNN của B=34 khi x=2
2, Ta có: \(\left|x+3\right|\ge0\)
\(\Rightarrow-\left|x+3\right|\le0\)
\(\Rightarrow C=2001-\left|x+3\right|\le2001\)
Dấu "=" xảy ra khi x = -3
Vậy GTLN của C = 2001 khi x=-3
Tìm giá trị lớn nhất của biểu thức: M=\(\frac{2013+x}{2014-x}\)