Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
AS
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NL
13 tháng 3 2016 lúc 10:30

\(\frac{a}{2}\) -\(\frac{3}{b}\) =\(\frac{5}{6}\) 

\(\frac{a.b}{2b}\) - \(\frac{6}{2b}\) =\(\frac{5}{6}\) 

\(\frac{a.b-6}{2b}\) =\(\frac{5}{6}\) 

suy ra a.b-6.6=2b.5

a.b-36=2b.5 

den day ti tinh tiep nha

Bình luận (0)
H24
Xem chi tiết
HN
27 tháng 12 2018 lúc 22:23

\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)

\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)

Bình luận (0)
KS
28 tháng 12 2018 lúc 5:09

\(\frac{2011^3+11^3}{2011^3+2000^3}\)

\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)

\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)

\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)

\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)

                                          đpcm

Bình luận (0)
KS
28 tháng 12 2018 lúc 19:09

\(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)

\(A=\left[\frac{\left(a+1\right)\left(ab-1\right)+\left(ab+a\right)\left(ab+1\right)-\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{\left(a+1\right)\left(ab-1\right)-\left(ab+a\right)\left(ab+1\right)+\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{a^2b-a+ab-1+a^2b^2+ab+a^2b+a-a^2b^2+1}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{a^2b-a+ab-1-a^2b^2-ab-a^2b-a+a^2b^2-1}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{2a^2b+2ab}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a^2b-2a}{\left(ab+1\right)\left(ab-1\right)}\right]\)

\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)

\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a}{\left(ab+1\right)}\right]\left(ab-1\ne0\right)\)

\(A=\frac{b\left(a+1\right)}{ab-1}\left(ab+1\ne0;2a\ne0\right)\)

Bình luận (0)
TK
Xem chi tiết
H24
27 tháng 7 2017 lúc 8:10

a) a = 2 , b = 3, c = 6

Bình luận (0)
TU
Xem chi tiết
NT
25 tháng 3 2018 lúc 10:20

1 ) Ta có :

b - a = 1 => b và a là hai số nguyên liên tiếp

MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( -  8 ) và ( - 9 )

Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

Bình luận (0)
NT
25 tháng 3 2018 lúc 10:08

2 ) \(\frac{1}{2.y}\)\(\frac{x}{3}-\frac{1}{6}\)

\(\frac{1}{2y}\)\(\frac{2x-1}{6}\)

=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z 

=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }

Lập bảng giá trị tương ứng giá trị của x , y :

2x - 1- 6- 3- 2- 11236
x /- 1 /01 /2 /
2y- 1- 2- 3- 66321
y /- 1 /- 33 /1 /
Bình luận (0)
TK
Xem chi tiết
TT
21 tháng 7 2017 lúc 18:28

\(\frac{1.bc}{abc}+\frac{1.ac}{abc}+\frac{1.ab}{abc}=1\)

\(bc+ac+ab=abc\)

phần sau bạn làm nốt nhé 

Bình luận (0)
HM
Xem chi tiết
CD
3 tháng 2 2019 lúc 21:43

theo giả thiết => a+b+c=3abc

ta có:

\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)

=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2

dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)

Bình luận (0)
CD
4 tháng 2 2019 lúc 9:45

sorry mk nhầm xảy ra dấu = <=>a=b=c=1

Bình luận (0)