CMR (17n+1)(17n+2) chia het cho 3
CMR (17n+1)(17n+2) chia het cho 3
CMR:(17n+1).(17n+2) không chia hết cho 3
Mình đang cần gấp lắm nha!!!
Cho P=n^4+5n^3+11^2-17n+12.CMR P chia het cho 6 voi n thuocN
Cho n thuoc N
CMR:
A=17n+111...1(n chu so 1) chia het cho 9
+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)
+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)
+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)
\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)
\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)
Ta thấy
\(17k+111...1⋮9\) (k chữ số 1)
\(9.111...1+18⋮9\)
\(\Rightarrow A⋮9\)
Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)
CM: 4n^5+n64+n^3-n^2-17n chia het cho 6
Bạn viết lại biểu thức để mọi người đọc rõ hơn.
C/m rằng:
(17n + 1).(17n + 2) chia hết cho 3
17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3
* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3
* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3
=> (17n+1)(17n+2) chia hết cho 3
Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3
------------------------------
Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ
17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3
=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3
* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3
=> (17n+1)(17n+2) chia hết cho 3
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b) Chứng minh A = (17n +1 ) (17n + 2 ) ⋮ 3
a) Gọi 3 số tự nhiên liên tiếp là
- Nếu ( thỏa mãn ). Nếu thì
- Nếu thì
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy là 3 số tự nhiên liên tiếp. Mà không chia hết cho 3, nên trong 2 số còn lại 1 số phải
Do vậy:
CMR n3+17n chia hết cho 6 với mọi n thuộc N
CMR : tồn tại số tự nhiên n để 17n -1 chia hết cho 25