tìm tất cả các số nguển tố x,y,z thỏa mãn: x^y+1=z
Tìm tất cả các số nguyên tố x,y,z thỏa mãn: (x+1)(y+2)(z+3)=4xyz MONG MỌI NGƯỜI GIÚP ĐỠ
Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)
Tìm tất cả các số nguyên dương x, y, z thỏa mãn \(3^x+2^y=1+2^z\)
2. Tìm tất cả các số thực x, y, z thỏa mãn điều kiện 2sqrt(x) + 2sqrt(y - x) + 3sqrt(z - y) = 1/2 * (z + 17)
Tìm tất cả các số nguyên x;y;z thỏa mãn
1/x+4/y+9/z=3 và x+y+z<=12
à à.đề đúng rồi.mình nhầm :D
chắc là áp dụng bđt này thôi 1/a+1/b ≥ 4/(a+b)
ta có: 1/x+4/y+9/z ≥ (1+2+3)^2/(x+y+z) => 3≥ 36/(x+y+z) => x+y+z ≥ 12
lại có x+y+z ≤ 12 => x+y+z=12
dấu "=" xảy ra khi và chỉ khi x=2, y=4, z=6
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm tất cả các số nguyên dương x, y, z thỏa mãn: x + 3 = 2^y và 3x + 1 = 4^z
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố
Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỷ và (y_2)(4xz+6y-3) là số nguyên tố
tìm tất cả các số nguyên x;z;y thỏa mãn z-1/yz-y+1=2015-7x/7