A=1/2.3+1/3.4+1/4.5+...+1/99.100
1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Cho A= 1/2.3+1/3.4+1/4.5+...+1/99.100. So sánh A với 1/2
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(\Leftrightarrow A< \frac{1}{2}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
Vậy A < 1/2.Vì 1/2 = 50/100 nên 49/100 > 50/100 nên A > 1/2
tính 1/2.3+1/3.4+1/4.5+......+1/99.100
1/2.3+1/3.4+1/4.5+...+1/99.100
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
=1/2-1/3+1/3-1/4+1/4-1/5+......+1/99-1/100
=1/2-1/100
=49/100
tính 1/2.3+1/3.4+1/4.5+..+1/99.100
1/2*3+1/3*4+...+1/99*100
=1/2-1/3+1/3-1/4+...+1/99-1/100
=50/100-1/100=49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)\(=>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>\frac{1}{2}-\frac{1}{100}=>\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
lam day du
1/2.3+1/3.4+1/4.5+.....1/99.100
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}\)
\(=\dfrac{49}{100}\)
S=1/1.2+1/2.3+1/3.4+1/4.5+....+1/99.100
bạn tách ra, 1/1.2=1-1/2 cứ như thế, rồi trừ đi còn 1-1/100=99/100
(1-2/2.3)(1-2/3.4)(1-2/4.5)...(1-2/99.100)
Tính
(1+1/2.3)(1+1/3.4)(1+1/4.5)....(1+1/99.100)
\(\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)\left(1+\frac{1}{4.5}\right)...\left(1+\frac{1}{99.100}\right)\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)\left(1+\frac{1}{3}-\frac{1}{4}\right)\left(1+\frac{1}{4}-\frac{1}{5}\right)...\left(1+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-\frac{1}{3}.1+\frac{1}{3}-\frac{1}{4}.1+\frac{1}{4}-\frac{1}{5}...1+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}-1.\left(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1.\left(2\frac{1}{3}-2\frac{1}{4}-...-2\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1\left[2.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{99}\right)\right]-\frac{1}{100}\)
tới đây bí
tính tổng
S = 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/99.100
\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
chúc các bạn học tốt
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=1\times\frac{49}{100}\)
\(S=\frac{49}{100}\)
Ta có: \(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)
Vậy \(S=\frac{49}{100}\)