Cho f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25
tính f(100)
cho f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25.Tính f(100)
Cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25. Tính f(100)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
Cho F(x) = x^8 -101x^7+101x^6-101x^5+...+101x^2-101x+25
Tính F(100)
Cho đa thức f(x) + x^8 - 101x^7+101x^6-101x^5+...+101x^2-101x+25 . Tính f(100)
Cho f(x) = x^8 -101x^7 +101x^6 -101x^5 +...+101x^2 -101x +25 . Tính f(100).
Ta có: 101 = 100+1=x+1
Khi đó :
\(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+.....+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6+x^5+...+x^3+x^2-x^2-x+25\)
\(f\left(x\right)=-x+25\)
Vậy \(f\left(100\right)=-100+25=-75\)
Cho f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25
Tính f(100)
f(100)=> x=100
=>x+1=101
thay x+1=101 ta được:
f(100)=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
=x8-(x8+x7)+(x7+x6)-(x6+x5)+...+(x3+x2)-(x2+x)+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=-x+25
=-100+25
=-75
cho f(x)= x^8-101x^7+106x^6-101x^5...+101x^2-101x+125 tính f(100)
Cho f(x)=x^8-101x^7+101x^6-101x^5+....+101x^2+101x+25
Tính f(100)
\(x=100\Rightarrow x+1=101\)
\(f\left(x\right)=x^8-\left(x+1\right).x^7+\left(x+1\right).x^6-\left(x+1\right).x^5+....+\left(x+1\right).x^2+\left(x+1\right).x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+.....+x^3+x^2-x^2+x+25\)
\(f\left(100\right)=100+25=125\)
Cho f(x)=x8-101x7+101x6-101x5+.....+101x2-101x+25.Tính f(100)
F(x)=x8-100x7-x7+100x6+x6-100x5-x5+......+100x2+x2-100x-x+25
f(x)=x7(x-100)-x6(x-100)+x5(x-100)-......+x(x-100)-(x-25)
f(100)=1007.(100-100)-1006(100-100)+......+100(100-100)-(100-25)
f(100)=-75
Vậy f(100)=-75
cho đa thức f(x)=x8-101x7+101x6-101x5+101x4-101x3+101x2-101x+2025. Tính f(100)