tinh B=2013+2013/1+2 +2013/1+2+3 +.......+2013/1+2+2012
tinh B=2013+2013/1+2+2013/1+2+3+....+2013/1+2+3+...+2012
tinh tong S=2013+2013/1+2+2013/1+2+3+...+2013/1+2+3+...+2012
\(\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+................+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+.............+\frac{1}{2013}}\)
Tinh tổng trên
tính tổng B=2013+(2013/1+2)+(2013/1+2+3)+...+(2013/1+2+3+...+2012)
Cho A=$\frac{n-2}{n+3}$n−2n+3 .Tìm giá trị của n để
a) A là phân số
b) A là một số nguyên
mọi người giải hộ tui với!!!
\(A=\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=1+\frac{5}{n+3}\)
a) \(n\in R\) trừ \(n=-3\)
b) để A là số nguyên thì \(\frac{5}{n+3}\in Z\)
Suy ra \(n+3\in\left\{1;5;-1;-5\right\}\)
Suy ra \(n\in\left\{-2;2;-4;-8\right\}\)
2013+(2013/1+2)+(2013/1+2+3)+(2013/1+2+3+4)+...+(2013/1+2+3+...+2012)
cho S= 1-1/2+1/3-1/4+..........+1/2011-1/2012+1/2013
va P=1/1007+1/1008+............+ 1/2012+1/2013
tinh (s-p)^2013
link này nè bn!
https://olm.vn/hoi-dap/detail/103540952175.html
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
(S-P)^2013 = 0
B=2013+2013/1+2+3+......+2013/1+2+3+4+....+2012
Tính giá trị biểu thức B=\(2013+\frac{2013}{1+2}+\frac{2013}{1+2+3}+\frac{2013}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013.(1+
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)
B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)
Maỳ có bị óc chó không mà bảo câu trả lời của đại ca tao là sai
A = (2013/2 + 2013/3+2013/4 + ....+2013/2014) : (2013/1+2012/2 +2011/3+...+1/2013)
\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)
\(A=\frac{2013}{2014}\)
\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)