tìm x,y,z nguyên dương thỏa mãn xyz = x +y +z +9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số nguyên dương x, y, z thỏa mãn xyz 9 x y z
Tìm các số nguyên dương x, y, z thỏa mãn
a) xyz = 4( x + y + z )
b) 2( x + y + z ) +9 = 3xyz
a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z
⇒⇒ 3z ≥≥ xyz
⇒⇒ 3 ≥≥ xy
Vì xy nguyên dương nên xy = 1 hoặc xy = 2
+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương
+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.
Vậy...
b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
chúc bạn hok tốt
a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)
Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)
=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)
+) Trường hợp 1 :
z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20
Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))
x - 4 | 20 | 10 | 5 | 4 | 2 | 1 |
y - 4 | 1 | 2 | 4 | 5 | 10 | 20 |
x | 24 | 14 | 9 | 8 | 6 | 5 |
y | 5 | 6 | 8 | 9 | 14 | 24 |
Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)
Xét tiếp trường hợp z = 2,z = 3 nữa nhé
b) Tương tự
Tìm các số nguyên dương x, y, z thỏa mãn: x+y+z=xyz
Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)
\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)
Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)
Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)
Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)
\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)
Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)
\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị
Tìm x,y,z nguyên dương thỏa mãn x + y + z =xyz
Tìm x,y,z nguyên dương thỏa mãn : x+y+z=xyz
tìm x,y.z nguyên dương thỏa mãn xyz=x+y+z+9
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z)
Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.
Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z
Và xy = 2 ( x + y + z ) : z
=> xyz \(\le\)6z
=> xy \(\le\)6
vì x, y là số nguyên dương
=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y
+) TH1 : xy = 1 => x = y = 1
=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại
+) TH2: xy = 2 => x = 1; y = 2
=> 2 z = 2 ( 1 + 2 + z ) => 0z = 6 loại
+) TH3: xy = 3 => x = 1; y = 3
=> 3z = 2 ( 1 + 3 + z ) => z = 8 ( thỏa mãn )
+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4
Với x =2; y = 2 => 4z =2 ( 4+ z) => z = 4 ( thỏa mãn )
Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)
Em làm tiếp nhé!