Cho a,b,c > 0 . Tim GTNN cua P =\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
Cho a,b,c > 0 . Tim GTNN cua P = \(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
Cho a,b,c > 1. Tìm GTNN của biểu thức: \(P=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
M=\(\frac{a^2+a-6}{a+1}\)+\(\frac{2b^2+2b-3}{b+1}\)+\(\frac{3c^2+3c-2}{c+1}\)
cho a,b,c>0 và a+2b+3c=6 tìm max M
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
Cho 2 so thuc duong a,b thoa man a+b<=1.Tim GTNN cua
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\)
Cho a,b,c>0 CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
cho a,b,c >0
CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....