câu này lm sao ạ tìm a để x^2+ax-2 chia cho x-3 dư 7
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
1,Tìm a,b sao cho x3+ax+b chia cho x+1 dư 7, chia cho x-3 dư -3
2,Tìm a,b,c sao cho ax3+bx2+c chia hết cho x+2, chia cho x-1 dư x +5
Giúp mk với ,mk cần gấp
a,gọi f(x)=x3+ax+b
theo đb có: f(x)=(x+1)t(x)+7
=> f(-1)=7=> -1-a+b=7<=>b-a=8(1)
f(x)=(x-3)h(x)-3=> f(3)=-3=> 27+3a+b=3<=> 3a+b=-24(2)
từ (1);(2)=> a=-8;b=0
1. a,Tìm a,b để x3+ax+b chia cho x+1 dư 7, cho x-3 dư -5
b, Tìm a,b để (x4+4) chia hết cho (x2+ax+b)
2. Xây dựng tổng quát về tìm dư khi chia đa thức A(x) cho nhị thức (x-a)
Áp dựng: tìm dư khi chia A(x)=x2018+x2017+x2016 cho x-1
tìm các hằng số a,b sao cho x3 +ax+b chia cho x+1 dư 7; chia cho x-2 dư 4
Lời giải:
Áp dụng định lý Bezout về phép chia đa thức, số dư của $f(x)=x^3+ax+b$ chia $x+1$ và $x-2$ lần lượt là $f(-1)$ và $f(2)$.
Ta có:
$f(-1)=(-1)^3+a(-1)+b=7$
$\Rightarrow -a+b=8(1)$
$f(2)=2^3+2a+b=8+2a+b=4$
$\Rightarrow 2a+b=-4(2)$
Lấy $(1) - (2)\Rightarrow -3a=12\Rightarrow a=-4$
$b=8+a=8+(-4)=4$
Vậy........
Tìm a,b để x^3 + ax + b , chia x+1 dư 7, chia x-2 dư 4
Ta có x3+ax+bx3+ax+b chia x+1x+1 dư 7.
Suy ra x3+ax+b=Q(x).(x+1)+7x3+ax+b=Q(x).(x+1)+7
Với x=−1x=−1 thì f(−1)=b−a−1=7⇒b−a=8⇒b=a+8f(−1)=b−a−1=7⇒b−a=8⇒b=a+8.
Lại có x3+ax+b=H(x).(x−3)−5x3+ax+b=H(x).(x−3)−5.
Với x=3x=3 thì f(3)=27+3a+b=−5⇒3a+b=−22f(3)=27+3a+b=−5⇒3a+b=−22.
Thay vô ta Tim được a,b
Cậu chú ý mũ nha , tớ không viết kịp
Tìm a,b để x^3 + ax + b , chia x+1 dư 7, chia x-2 dư 4
Ta phân tích thành
\(x^3+ax+b=\left(x+1\right)\left(x^2-x+a+1\right)+b-a-1\)
Và \(x^3+ax+b=\left(x-2\right)\left(x^2+2x+a+4\right)+b+2a+8\)
Kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}b-a-1=7\\b+2a+8=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=-4\\b=4\end{cases}}}\)
2. Tìm n thuộc Z để
a, 2n^2 -n-7 chia hết cho n-2
b, 25n^2 - 97n +11 chia hết cho n-4
1.Tìm a,b biết x^3 + ax +b chia x+1 dư 7; chia cho x-3 dư -5
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).Số dư của phép chia này là 7 nên ta có:\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
Từ (1) và (2) ta có:\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.Viết kết quả các phép chia này ta được:\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Bài 1: Xác định a, b sao cho x3+ax+b chia hết cho (x+1) dư 7, chia cho (x-3) dư -5
Bài 2: Xác định a sao cho:
a) x3+ax2-4 chia hết cho x2+4x+4
b) 2x2+ax+1 chia hết cho x-3 dư 4
tìm các hằng số a và b sao cho \(x^3+ax+b\)chia cho x+1 dư 7; chia cho x-2 dư 4
Gọi thương của phép chia \(x^3+ax+b\) cho \(x+1\)là \(A\left(x\right)\); cho \(x-2\)là \(B\left(x\right)\)
Ta có: \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)
\(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)
Theo định lý Bơ-du ta có:
\(f\left(-1\right)=-1-a+b=7\)
\(f\left(2\right)=8+2a+b=4\)
suy ra: \(a=-4;\) \(b=4\)
Vậy...