Những câu hỏi liên quan
CB
Xem chi tiết
LH
20 tháng 3 2017 lúc 20:30

câu a

có 102008 + 125 = 1000...000125 (2005 số 0)

có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9

=> 1000...000125 (2005 số 0) chia hết cho 9

mà 1000...000125 (2005 số 0) chia hết cho 5

5 và 9 nguyên tố cùng nhau

=> 1000...000125 (2005 số 0) chia hết cho 45

=> 102008 + 125 chia hết cho 45

câu b

52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31

=> 52006 . 31 chia hết 31

=> 52008 + 52007 + 52006 chia hết 31

2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai

chúc may mắn

Bình luận (0)
OO
Xem chi tiết
OO
16 tháng 3 2016 lúc 5:48

mk nghĩ bn vào chtt đi chứ giải ra dài quá

Bình luận (0)
LN
Xem chi tiết
AD
Xem chi tiết
HD
Xem chi tiết
HD
8 tháng 4 2016 lúc 20:09

??!!?

Bình luận (0)
NT
9 tháng 4 2016 lúc 9:10

Đặt biểu thức trên là A.

Ta có: A=2^2008-8

            A=(2^4+2^5+....+2^2008)-(8+2^4+....+2^2007)

            A=2x(8+2^4+....+2^2007)-(8+2^4+....+2^2007)

       A=8+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12+....+2^2003+2^2004+2^2005+2^2006+2^2007(có 2005 số hạng)

A=(8+2^4+2^5+2^6+2^7)+                                                                                                       (2^8+2^9+2^10+2^11+2^12)+....+(2^2003+2^2004+2^2005+2^2006+2^2007)(có 401 nhóm)

A=8x(1+2+4+8+16)+2^8x(1+2+4+8+16)+.....+2^2003x(1+2+4+8+16)

A=8x31+2^8x31+....+2^2003x31

A=31x(8+2^8+...+2^2003)

A là tích có thừa số 31 nên A chia hết cho 31(đpcm)

 

            

Bình luận (1)
PD
9 tháng 4 2016 lúc 10:54

thiệt chớ tao hiểu tao chết liền

Bình luận (1)
TC
Xem chi tiết
NQ
19 tháng 11 2017 lúc 19:48

A =(5+5^2)+(5^3+5^4)+.....+(5^2007+2^2008)

=30+5^2.(5+5^2)+....+5^2006.(5+5^2)

=30+5^2.30+....+5^2006.30

=30.(1+5^2+...+5^2006) chia hết cho 30

=> ĐPCM

k mk nha

Bình luận (0)
DH
19 tháng 11 2017 lúc 19:51

Ta có: \(A=5+5^2+.....+5^{2008}\)

\(\Rightarrow A=\left(5+5^2+5^3\right)+.....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)

           \(=5.\left(1+5+5^2\right)+.....+5^{2006}.\left(1+5+5^2\right)\)

             \(=5.31+....+5^{2006}.31\)

               \(31.\left(5+....+5^{2006}\right)⋮31\)

Vậy A chia cho 30 dư 1

Bình luận (0)
PK
19 tháng 11 2017 lúc 19:53

bài này giải như sau:

A=5+5^2+5^3+5^4+...+5^2008 

số số hạng của dãy số trên là:(2008-1):1+1=2008(số)

A=(5+5^2)+5^2(5+5^2)+...+5^2006(5+5^2)

A=30 +5^2.30+...+5^2006.30

A=30(1+5^2+...+2^2006) chia hết cho 30

Chúc bạn làm bài tốt nhé

Bình luận (0)
PK
Xem chi tiết
NM
13 tháng 10 2023 lúc 8:14

a/

\(A=4^2.4^{37}+4^2.4^{38}+4^2.4^{39}=4^2\left(4^{37}+4^{38}+4^{39}\right)=\)

\(=2.8.\left(4^{37}+4^{38}+4^{39}\right)⋮8\)

b/

\(B=10^7\left(1+10+10^2\right)=10.10^6.111=\)

\(=5.10^6.222⋮222\)

c/

\(C=5^{2006}\left(1+5+5^2\right)=5^{2006}.31⋮31\)

Bình luận (0)
PB
7 tháng 12 2024 lúc 21:21

3n + 1

Bình luận (0)
TT
Xem chi tiết
CG
Xem chi tiết