Những câu hỏi liên quan
TA
Xem chi tiết
NH
10 tháng 5 2018 lúc 15:55

ta có a+b+c=0       =>     a=-b-c,         b=-a-c,            c=-a-b

thay vào A ta được 

 A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)

   =(1-1-c/b)(1-1-a/c)(1-1-b/a)

   =(-c/b)(-a/c)(-b/a)

   =(-abc)/abc

    =-1

Bình luận (0)
KT
10 tháng 5 2018 lúc 19:57

bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:

           BÀI LÀM

          \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

    \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

    \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)

Bình luận (0)
PT
Xem chi tiết
TD
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
MN
Xem chi tiết
NM
Xem chi tiết
NA
3 tháng 3 2015 lúc 12:13

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

<=>c(a+b)(a+b+c)=-ab(a+b)

<=>(a+b)(ac+bc+c2)+ab(a+b)=0

<=>(a+b)(ac+bc+ab+c2)=0

<=>(a+b)(a+c)(c+b)=0

       a+b=0

<=> b+c=o

       c+a=0
 

Bình luận (0)
H24
Xem chi tiết
LC
9 tháng 5 2019 lúc 9:39

ddap an la bang -1 

Bình luận (0)
LC
9 tháng 5 2019 lúc 9:42

\(A=\left(\frac{a+b}{b}\right).\left(\frac{b+c}{c}\right).\left(\frac{c+a}{a}\right)\)

Vì \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\c+b=-a\end{cases}}\)

\(\Rightarrow A=\frac{-c}{b}.\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)=-1\)

Bình luận (0)
VH
9 tháng 5 2019 lúc 18:39

Ta có: \(a+b+c=0\)

\(\Rightarrow b+a=-c\)

\(\Rightarrow c+b=-a\)

\(\Rightarrow a+c=-b\)

Ta có: \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)\)

\(\Rightarrow A=\left(\frac{-c}{b}\right)\left(\frac{-a}{c}\right)\left(\frac{-b}{a}\right)\)

\(\Rightarrow A=-1\)

~~k cho mik nha~~

Bình luận (0)
hj
Xem chi tiết
PM
Xem chi tiết