Những câu hỏi liên quan
TN
Xem chi tiết
CC
Xem chi tiết
KN
11 tháng 2 2019 lúc 8:19

                          Giải

- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17

-Gọi A = 12a + 44b

       B = 5a + 7b

- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)

+Xét tổng A + B = 12a + 44b + 5a + 7b

                        = 17a + 51b

                        = 17.(a + 3b)  chia hết cho 17

Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.

Bình luận (0)
BM
Xem chi tiết
GG
11 tháng 11 2019 lúc 17:49

Ta có :

2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b

                                       = 17a

Vì 17a chia hết cho 17 

=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

Vì ( 3a + 2b ) chia hết cho 17 

=> 2 . ( 10a + b ) chia hết cho 17

Mà ( 2 ; 17 ) = 1

=> ( 10a + b ) chia hết cho 17

Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17

Bình luận (0)
 Khách vãng lai đã xóa
LV
15 tháng 10 2021 lúc 9:45

Theo đề bài ra, ta có:

\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))

\(\Rightarrow\)\(10a+2b⋮17\)

\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)

Mà \(\left(2;7\right)=1\)

\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AV
Xem chi tiết
HD
27 tháng 3 2017 lúc 12:43

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!

Bình luận (0)
TA
Xem chi tiết
DL
Xem chi tiết
LD
13 tháng 4 2016 lúc 17:40

a. Ta có:  chia hết cho 7 nên  chia hết cho 7.
 không chia hết cho 7 nên  không chia hết cho 7.

3. .
Ta sẽ đi chứng minh  chia hết cho  với mọi  nguyên.
Thật vậy:

.
Do  là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà  nên tích  chia hết cho .

Cũng do  là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích  chia hết cho .
Ta có đpcm.

=x(x-1)(x+1)(x^2-4+5)=(x-2)(x-1)x(x+1)(x+2)+5(x-1)(x+1)x

Bình luận (0)
DH
13 tháng 4 2016 lúc 17:43

a. Ta có:  chia hết cho 7 nên  chia hết cho 7.
 không chia hết cho 7 nên  không chia hết cho 7.

3. .
Ta sẽ đi chứng minh  chia hết cho  với mọi  nguyên.
Thật vậy:

.
Do  là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà  nên tích  chia hết cho .

Cũng do  là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích  chia hết cho .
Ta có đpcm.

=x(x-1)(x+1)(x^2-4+5)=(x-2)(x-1)x(x+1)(x+2)+5(x-1)(x+1)x

Bình luận (0)
HT
13 tháng 4 2016 lúc 18:34

Xét hiệu 10(3a +2b) - 3(10a +b) = 30a +20b - 30a -3b = 17b

- Nếu 3a +2b chia hết cho 17 => 10(3a +2b) chia hết cho 17 và 17b chia hết cho 17 do đó 3(10a +b) chia hết cho 17

Mà 3 và 17 nguyên tố cùng nhau. Suy ra 10a +b chia hết cho 17

- Lập luận tương tự để kết luận điều ngược lại đúng

Bình luận (0)
PD
Xem chi tiết
MT
5 tháng 6 2015 lúc 20:52

ta có 9x+7y=34x-25x+17y-10y

                 =34x+17y+(-25x-10x)

                =34x+17y-5(5x+2y)

VÌ *34 chia hết cho 17

    *17 chia hết cho 17

    *(5x+2y) chia hết cho 17

nên nếu x;y thuộc Z thỏa mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17

Bình luận (0)
NT
Xem chi tiết
AH
9 tháng 10 2023 lúc 15:39

Lời giải:
$a-11b+3c\vdots 17$

$\Rightarrow 2(a-11b+3c)\vdots 17$

$\Rightarrow 2a-22b+6c\vdots 17$

$\Rightarrow 2a-5b+6c-17b\vdots 17$

$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)

Bình luận (0)