a^3-b^3-c^3=3abc và a^2=(b+c)2 tìm a;b;c là số nguyên dương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các số nguyên dương a;b;c sao cho a^3-b^3-c^3=3abc và a^2=2(b+c)
Tìm các số nguyên dương a,b,c biết rằng: a^3 - b^3 - c^3= 3abc và a^2 = 2.(b+c)
a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
Được bạn nhé :"))))
Ủng hộ mình = cách theo dõi mình nha
a+b+c=0
\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó
Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.
Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)
Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:
\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)
Do đó:
\(a^3+b^3+c^3=3abc\)
tìm các số nguyên dương a,b,c biết rằng: a^3 - b^3 - c^3 = 3abc và a^2 = 29b + c)
cho a, b, c thuộc N* mà: a3 - b3-c3=3abc và a2 = 2(b+c). Tìm a,b,c
Vì a^3-b^3-c^3=3abc>0
=>a>b ; a>c
=>2a>b+c
=>4a>2(b+c)
=>4>a
=>4>a
=>2(b+c)=a^2 chia hết cho 2
=>a chia hết cho 2
=>a=2 => b=c=1
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
tìm các số nguyên dương a,b,c biết a3-b3 -c3 =3abc và a2=2(b+c)
a,b,c là số nguyên dương => 3abc>0
=> a3-b3-c3>0 => a3>b3 => a>b và a3>c3 => a>c
=> 2a > b+c => 4a > 2(b+c)
=> 4a>a2 => a<4
Mà 2(b+c) là số chẵn => a2 chẵn hay a chẵn => a=2
Vì b,c<2 và b,c thuộc Z+ => b=c=1
Vậy a=2,b=c=1
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
tìm các số nguyên dương a;b;c sao cho a3-b3-c3=3abc và a2=2(b+c)
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
sai r bạn ơi
ai cho bạn nói cái đó lớn hơn 0
tìm các số nguyên dương a;b;c sao cho a3-b3-c3=3abc và a2=2(b+c)
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
Ta có: \(a,b,c\in Z+\)
=> abc>0 =>3abc>0
=>a3-b3-c3>0
=>\(\hept{\begin{cases}a>b\\a>c\end{cases}}\)
=>\(a+a>b+c\)
=> \(2a>b+c\)
=>\(4a>2\left(b+c\right)\)
=>\(4a>a^2\)=>\(4>a\)(1)
Mà a2=2(b+c) (*) chia hết cho 2 =>a chia hết cho 2 (2)
Từ (1) và (2) => a=2
Thay a=2 vào (*) =>\(b+c=2\), mà \(b,c\in Z+\) =>b=c=1
KL: (a,b,c)=(2,1,1)