chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
ra xét các trường hợp của n đi rồi thử
Chứng tỏ 13^n *2+7^n *5+26 không là số chính phương với n thuộc N
Chứng minh rằng \(13^n.2+7^n.5+26\) (n∈N) không là số chính phương
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Chứng minh rằng \(13^n.2+7^n.5+26\)không thể là số chính phương với \(n\in N\)
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )
Cho C = 1/11 + 1/12 = 1/13 +...+ 1/19
Chứng minh rằng C ko phải là số nguyên
b) Cho D = 2( 1/3 + 1/15 + 1/35 +...+1/n(n+2)) với n thuộc N*
Chứng minh rằng D ko phải lf số nguyên
c) Cho E = 1/3 + 1/4 + 1/5 + 2/7 + 2/9 + 2/11
Chứng minh rằng E ko phải là số nguyên
Bài khó quá, giúp mình nha!