Những câu hỏi liên quan
PN
Xem chi tiết
XT
29 tháng 4 2017 lúc 22:25

Đkxđ: a khác 0,5

\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)

(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)

Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)

Mà Ư(3)={-3;-1;1;3}

Ta có bảng sau:

2a-1 -3 -1 1 3
a -1 0 1 2

Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên

Bình luận (0)
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PQ
23 tháng 4 2018 lúc 18:50

Ta có : 

\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\) 

+) Xét \(a>0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)

\(A=\frac{80a-40+15}{10a-5}\)

\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)

\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)

\(A=8+\frac{15}{10a-5}\)

Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay  \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)

Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Suy ra : 

\(10a-5\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(a\)\(\frac{3}{5}\)\(\frac{2}{5}\)\(\frac{4}{5}\)\(\frac{1}{5}\)\(1\)\(0\)\(2\)\(-1\)

Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)

+) Xét \(a=0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)

\(A=\frac{40\left|0-1\right|+15}{0-5}\)

\(A=\frac{40+15}{-5}\)

\(A=-11\) ( A nguyên ) 

Vậy \(a\in\left\{-1;0;1;2\right\}\)

Chúc bạn học tốt ~ 

Bình luận (0)
ND
23 tháng 4 2018 lúc 17:35

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(\left|2a-1\right|=2a-1\)

\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)

Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)

Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)

\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)

\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)

\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)

Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)

Bình luận (0)
DT
Xem chi tiết
TQ
Xem chi tiết
TQ
Xem chi tiết
TQ
21 tháng 11 2016 lúc 20:37

a thuộc tập hợp số tự nhiên nhé, nhầm

Bình luận (0)
PM
Xem chi tiết
AH
2 tháng 9 2023 lúc 17:24

Lời giải:
Để $(2a-2)(a^2+2a+15)$ là snt thì buộc 1 trong 2 thừa số đã cho phải là 1 còn thừa số còn lại là snt.

Hiển nhiên $a^2+2a+15>1$ với mọi $a\in\mathbb{N}$ nên $2a-1=1$

$\Rightarrow a=1$.

Thay $a=1$ vào thì $(2a-1)(a^2+2a+15)=18$ không phải snt.

Vậy không tồn tại $a$ thỏa mãn đề.

Bình luận (0)
NT
2 tháng 9 2023 lúc 17:31

\(\left(2a-1\right)\left(a^2+2a+15\right)\left(a\inℕ\right)\)

Đẻ \(\left(2a-1\right)\left(a^2+2a+15\right)\) là số nguyên tố khi và chỉ khi

\(\left\{{}\begin{matrix}2a-1⋮1\\a^2+2a+15⋮1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a-1=1\\a^2+2a+15=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=2\\a^2+2a+15=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\1^2+2.1+15=1\left(vô.lý\right)\end{matrix}\right.\)

\(\Rightarrow a\in\varnothing\) 

Bình luận (0)