Những câu hỏi liên quan
NH
Xem chi tiết
DC
Xem chi tiết
H24
Xem chi tiết
LL
3 tháng 2 2022 lúc 22:10

\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)

Bình luận (0)
TH
3 tháng 2 2022 lúc 22:13

\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)

\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)

Bình luận (0)
HP
3 tháng 2 2022 lúc 22:15

\(A=3+3^2+3^3+...+3^{2012}\)

\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+...+3^{2012}\right)\)

\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(A=3.40+3^5.40+...+3^{2009}.40\)

\(A=120+3^4.120+...+3^{2008}.120\)

\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)

Bình luận (0)
KB
Xem chi tiết
LD
Xem chi tiết
HG
22 tháng 11 2015 lúc 12:38

Xét tử:

\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)

\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

Thay vào ta có:

A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)

=> A = 2013 

Mà 2013 chia hết cho 3

=> A chia hết cho 3

Bình luận (0)
ND
22 tháng 11 2015 lúc 12:22

A = 2013  chia hết cho 3 nhé

Bình luận (0)
NT
Xem chi tiết
NT
21 tháng 10 2021 lúc 22:47

giúp tớ với

Bình luận (0)
 Khách vãng lai đã xóa
TG
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
DH
14 tháng 2 2016 lúc 12:47

http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg

Bình luận (0)
H24
14 tháng 2 2016 lúc 12:48

có chia hết

Bình luận (0)
ND
14 tháng 2 2016 lúc 12:49

giải thích ra với

Bình luận (0)
PN
Xem chi tiết
.
7 tháng 1 2021 lúc 20:37

Ta có: \(A=3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=3.40+3^5.40+...+3^{2009}.40\)

\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)

Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)

hay \(A⋮120\)  (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
LL
4 tháng 10 2021 lúc 17:41

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

Bình luận (0)