CMR 1/2-1/4+1/8-1/16+1/32-1/64<1/3
b) 1/3-2/32+3/33-4/34+........+99/399-100/3100<3/16
CMR: 1/2-1/4+1/8-1/16+1/32-1/64<1/3
đúng rồi đó Trương Quang Hải ( đừng tik cho Trương Quang Hải)
1/2+1/4+1/8+1/16+1/32+1/64?
giải
1/2+1/4+1/8+1/16+1/32+1/64
= 1/2+1/4+1/8+1/16+1/32+1/64+ 1/64 -1/64
=1-1/64=63/64
CMR:1/2-1/4+1/8-1/16+1/32-1/64 < 1/3
CMR 1/2-1/4+1/8-1/16+1/32-1/64<1/3
=(1/2 _ 1/4) + (1/8 + 1/16 ) + ( 1/32 - 1/64 )
= 1/4 +1/16 + 1/64
= 16 + 4 + 1/ 64
= 21/64 < 21/63
= 1/3
=> 1/2 -1/4 + 1/8 - 1/16 + 1/32 - 1/ 64 < 1/3
Chúc bạn làm bài tốt =))
Nguyễn Văn Anh là người ngu học !
CMR
a,1/2-1/4+1/8-1/16+1/32-1/64<1/3
Cmr: A=1/2-1/4+1/8-1/16+1/32-1/64<1/3
A=1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64
A= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
A= 1/4 + 1/16 + 1/64
A = 16/64 + 4/64 + 1/64
A = 16+4+1/64
A= 21/64
Ta có : 1/3 = 21/63 mà 21/64 < 21/63 => 21/64 < 1/3 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/ 64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/ 64 < 1/3 ( đã chứng minh được )
CMR
1/2-1/4+1/8-1/16+1/32-1/64<1/3
1/3-2/3^2+3/3^3+4/3^4+...+99/3^99<3/16
Cmr
1/2-1/4+1/8-1/16+1/32-1/64<1/3
Giúp mk với
A=1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64
A= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
A= 1/4 + 1/16 + 1/64
A = 16/64 + 4/64 + 1/64
A = 16+4+1/64
A= 21/64
Ta có : 1/3 = 21/63 mà 21/64 < 21/63 => 21/64 < 1/3 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/ 64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/ 64 < 1/3
CMR \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
\(N=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(N=\dfrac{1}{2^1}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)
\(2N=1-\dfrac{1}{2^1}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)
\(2N+N=1-\dfrac{1}{2^6}\)
\(N=\dfrac{1}{3}-\dfrac{1}{2^6.3}< \dfrac{1}{3}\left(đpcm\right)\)
CMR
\(\dfrac{1}{2}-\dfrac{-1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< 1\)
Sửa đề:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< 1\)
Ta có:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}\)
\(< \dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}< \dfrac{4}{4}< 1\)
CMR:
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b)1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...+ 99/3^99 -100/3^100 < 3/16