\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+\frac{4}{10.13}\)
Tính nhanh
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)
Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)
1/4-1/7 = 3/28 = 3.(1/4.7)
A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)
A = 3.(1-1/100)
A = 3.(99/100)
A = 297/100
\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}\)
\(A=\frac{33}{100}\)
Cho A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+..............+\frac{4}{67.70}\)
Chứng minh A>\(\frac{9}{7}\)
Có A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+.........+\frac{4}{67.70}\)
A=\(\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+............+\frac{3}{67.70}\right)\)
A=\(\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-..........-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\left(1-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\frac{69}{70}=\frac{46}{35}\)
Vì \(\frac{46}{35}>\frac{9}{7}\) nên A>\(\frac{9}{7}\)
\(A=\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{70}\right)\)
\(A=\frac{4}{3}.\left(1-\frac{1}{70}\right)=\frac{4}{3}\cdot\frac{69}{70}=\frac{46}{35}>\frac{9}{7}\)
Vậy A >9/7
Tính :
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
Tìm A :
A = \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
A:3=\(\frac{3}{1.4}+\frac{3}{4.7}\)\(+.....+\frac{3}{97.100}\)
A:3=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\)
A:3=\(\frac{1}{1}-\frac{1}{100}\)
A:3=\(\frac{99}{100}\)
A=\(\frac{99}{100}.3\)
A=\(\frac{297}{100}\)
\(A:3=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)
\(A:3=\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A:3=\frac{1}{1}-\frac{1}{100}\)
\(A:3=\frac{99}{100}\)
\(A=\frac{99}{100}.3\)
\(A=\frac{297}{100}\)
So sánh A và B biết
a,A=6\(\left(x+\frac{1}{3}\right)^2\)
,B=-8-(3,75-x)2
b,A=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
B=\(\left(\frac{1}{2}\right)^4\)
Tính nhanh: \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
Bài 3 Tính giá trị biểu thức\(\left(1_{ },5\right).\frac{-2}{3}+\left(2,5-\frac{3}{4}\right):1\frac{3}{4}\)
B=\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
Thằng an mất dạy :)))
#Lê_Linh
tinh A
A=\(\frac{3^2}{1.4}\)+\(\frac{3^2}{4.7}\)+\(\frac{3^2}{7.10}\)+\(\frac{3^2}{10.13}\)+.......+\(\frac{3^2}{97.100}\)
= \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
= \(3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(3\left(1-\frac{1}{100}\right)\)
= \(3\left(\frac{100}{100}-\frac{1}{100}\right)\)
= \(3.\frac{99}{100}\)
= \(\frac{297}{100}\)
\(A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)
Cho mk hỏi nha ( Đề thi vào lớp 7 )
Thông cảm năm nay mk mới vào lớp 6
Tính :
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
lp 6 lm bài lp 7 lm j
tí nữa lm cho đag mải
đề dễ mà định thi vao đâu vậy
\(A=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\left(1-\frac{1}{100}\right)\)
\(A=\frac{297}{100}\)
Lo xa ha Lan Hương nhỉ kb nha mk cx lp 6 nè