cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 6
Cho 7 số tự nhiên bất kì. Chứng minh bao giờ cũng có thể cohonj ra 2 số mà hiệu của chúng chia hết cho 6
Khi chia 1 số tự nhiên bất kì cho 6, số dư có thể một trong 6 số 0,1,2,3,4,5
Theo nguyên lí Dirichlet thì trong 7 số tự nhiên bất kì sẽ có cùng số dư khi chia cho 6
=>Hiệu của chúng chia hết cho 6
Cho 7 số tự nhiên bất kì chứng minh rằng bao giờ cũng có thể chọn ra 2 số mà hiệu chia hết cho 6
ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,
có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư
khi đó hiệu chúng sẽ chia hết cho6
Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5
Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du
Khi do hieu cua chung se chia het cho 6
Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 4
Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Chứng minh rằng: Trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Chứng minh rằng:Trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Gọi 12 số đó là a;a+1;a+2;a+3;a+4;a+5;a+6;a+7;a+8;a+9;a+10;a+11
Ta có: Chọn ngẫu nhiên 2 số và lấy hiệu của chúng l(a+11)-a
Thì sẽ bằng: (a+11)-a= (a-a)+11=11
Mà vì 11 chia hết cho 11
Vậy trong 12 số tự nhiên liên tiếp bất kì bao giờ cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 ĐPCM
Chúng minh trong 7 số tự nhiên bất kì bao giờ cũng chọn ra được 4 số mà tổng của chúng chia hết cho 4
Chứng tỏ rằng:
Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.