tìm a,b,c,d \(\varepsilon N\)
biết \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Bài 1:Cho a,b,c,d \(\varepsilon\)N* và S=\(\frac{a}{a+b+c}\)+ \(\frac{b}{b+c+d}\)+ \(\frac{c}{c+d+a}\)+\(\frac{d}{d+a+b}\).Chứng tỏ rằng S không là số tự nhiên
Bài 2:Tìm các số tự nhiên a,b,c,d sao cho \(\frac{1}{a^2}\)+ \(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)+ \(\frac{1}{d^2}\)=1
\(\frac{30}{43}\)=\(\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
tìm các số a, b, c, d biết a, b, c, d \(\varepsilon\)N
\(\frac{30}{43}=\frac{1}{\frac{30}{43}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
Vậy a = 1 ; b = 2 ; c = 3 ; d =4
Tìm a,b,c,d thuộc N
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
1) Tìm x,y \(\varepsilon\)Z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=\frac{2}{3}\)
2) Tìm x \(\varepsilon\)Z để A \(\varepsilon\)Z
c)A=\(\frac{x+1}{x^2+1}\)
d)A=\(\frac{x^3-x^2+2}{x-1}\)
\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
Tìm các số a,b,c,d \(\varepsilon\) N
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}\)\(=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
Suy ra: a=1;b=2;c=3;d=4
A=\((1+\frac{x^2}{x^2+1})\): \((\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1})\)
a, Rút gọn A
b, A=? khi x=\(\frac{-1}{2}\)
c, x=? đểA<1
d, Tìm x\(\varepsilon\)Z để A \(\varepsilon Z\)
a) \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)= ?
b) Tìm các STN a, b, c, d (khác nhau) sao cho :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
A=( 1+\(\frac{x^2}{x^2+1}\)) :( \(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\))
a, rút gọn A
b, A=? khi x= \(\frac{-1}{2}\)
c, x=? để A<1
d, Tìm x\(\varepsilon\)Z để A \(\varepsilon\)Z
tìm a,b,c,d là số tự nhiên thoả : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\).biết đáp án nhưng ko bít cách giải
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2
Không mất tính tổng quát, ta giả sử a là số nhỏ nhất, tức \(a\le b,a\le c,a\le d\) \(\Rightarrow a\le2\)
Khi đó \(a=1\) hoặc \(a=2\)
Dễ thấy \(a=1\) không thỏa mãn. Vậy \(a=2\)
Suy ra \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Nếu \(b,c,d>3\) thì \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{3^2}=\frac{1}{3}< \frac{3}{4}\) (vô lí)
Vậy trong 3 số b,c,d tồn tại ít nhất một số không lớn hơn 3
Ta giả sử b là số nhỏ nhất \(b\le3\) , khi đó \(b=2\) hoặc \(b=3\) (vì b = 1 không thỏa)
Nếu \(b=2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)Dễ thấy nếu \(c,d>2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}>\frac{1}{2}\) (vô lí). Vậy \(c,d\le2\)
Với c = 1 hoặc d = 1 ta thấy ngay điều vô lí.
Với c = 2 thì d = 2 và ngược lại.
Nếu \(b=3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{7}{18}\)Dễ thấy nếu \(c,d>3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}=\frac{2}{9}< \frac{7}{18}\) (vô lí)
Vậy \(c,d\le3\)
Với c = 1 hoặc d = 1 thấy ngay điều vô lí
Với c= 2 thì d = 2 và ngược lại.
Với c = 3 thì d = \(\frac{5}{18}\) (loại vì \(d\notin N\))
Vậy : \(\left(a;b;c;d\right)=\left(2;2;2;2\right)\)
Cách này có vẻ chặt hơn :)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2.
Không mất tính tổng quát, ta giả sử a là số lớn nhất, tức \(a\ge b\ge c\ge d\)
\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{4}{a^2}\Rightarrow a^2\ge4\Rightarrow a\ge2\) (Vì a > 0)
Mà \(a\le2\) nên a = 2
\(\Rightarrow\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Vì \(b\ge c\ge d\) nên \(\frac{3}{4}=\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{3}{b^2}\Rightarrow b^2\ge4\Leftrightarrow b\ge2\) (vì b > 0)
Vậy b = 2
\(\Rightarrow\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Nếu \(c=1\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=1+\frac{1}{d^2}>\frac{1}{2}\) (vô lý)
Vậy c = 2 => d = 2
Kết luận : (a;b;c;d) = (2;2;2;2)