Tìm các số tự nhiên x, y, z biết x + 2013*y2 + 2014*z3 = 4027
tìm số tự nhiên x;y;z biết: 2014x = 2013y + 2012z
+) Nếu x đều lớn hơn 1 ; y lớn hơn hoặc = 0; z\(\ge\) 1:
Nhận xét: 2014x chia hết cho 2;
2013y không chia hết cho 2
2012z chia hết cho 2
=> 2013y + 2012z không chia hết cho 2
=> 2014x = 2013y + 2012z không xảy ra
+) Nếu x = 1 => 2014 = 2013y + 2012z => chỉ có y = 1; z =0 thoả mãn
+) Nếu x = 0 => 1 = 2013y + 2012z => không có y,z thoả mãn vì 2013y + 2012z nhỏ nhất = 1 + 1 = 2
Vậy chỉ có x = 1; y = 1; z = 0 thoả mãn
xét y=0 phương trình ko có nghiệm nguyên
xét x= 0 phương trình ko có nghiệm nguyên
xét x;y;z lớn hơn hoặc bằng 1 thì
2012^z chia hết cho 2
2013^y ko chia hết cho 2
=> 2012^z + 2013^y ko chia hết cho 2
mà 2014^x chia hết cho 2
=> vô lý
vậy phương trình có nghiệm (x;y;z)=(0;1;1)
tìm các số tự nhiên x,y,z để thỏa mãn : 2014x=2013y+2012z
Tìm số tự nhiên x,y , z biết 2014x = 2013y + 2012z
2. a)S=1-2+2^2-2^3+...........+2^2014 tính S.
b) So sánh: A=2^2013+3/2^2014+3 và B=2^2014+3/2^2015+3.
c) tìm các số tự nhiên a,b :a/3+b/4=a+b/3+4.
3. tìm các số tự nhiên x,y biết: (2^x+1) (2^x+2) (2^x+3) (2^x+4)-5^y=11879.
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Tìm x;y;z;biết
x-y+2013:y-z=-2014:z+x=2015
Tìm các bộ số tự nhiên ( x , y ,z ) thỏa mãn x \(\le\) y \(\le\) z; x2+y2+z2=34. ( Ai giúp mình với )
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
TÌm các số tự nhiên x, y, z thỏa mãn x2 + y2 = 2023z + 35