Chứng minh rằng: \(n^2+5n+15\)không chia hết cho 49 ( với n là số tự nhiên )
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Chứng minh rằng với mọi số tự nhiên n thì số n2+5n+5 không thể chia hết cho 25.
n2+5n+5 chia hết cho 25
=>n2+5n+5 chia hết cho 5
Giả sử n2+5n+5 chia hết cho 5
Vì 5n+5=5(n+1) chia hết cho 5
=>n2 chia hết cho 5,mà 5 là số nguyên tố => n chia hết cho 5
do đó n có dạng:n=5k (k E N)
ta có:n2+5n+5=(5k)2+5.5k+5=52.k2+25k+5=25k2+25k+5
Vì 25k2+25k=25(k2+k) chia hết cho 25,mà 5 ko chia hết cho 25=>n2+5n+5 ko chia hết cho 25
=>Trái giả thiết
Vậy ....
Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5)
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25
toan cau tra loi ngao cho
Giả sử n là số tự nhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chính phương
Chứng minh rằng \(n^2+11n+39\) không chia hết cho 49 với mọi số tự nhiên n .
chứng minh nó không chia hết cho 49 là được. dễ mà
Đặt A=n2+11n+39
Giả sử n2+11n+39 chia hết cho 49 thì A chia hết cho 49 => A cũng chia hết cho 7
Ta có A=n2+11n+39=n2+9n+2n+18+21 = n(n+9)+2(n+9)+21 =(n+9)(n+2)+21
Nhận thấy( n+9)-(n+2)=7
=>Đồng thời (n+9) và (n+2) chia hết cho 7 => (n+9)(n+2) chia hết cho 49
Ta cũng có A chia hết cho 49 mà 21 ko chia hết cho 49 ( vô lí )
Vậy n2+11n+39 ko chia hết cho 49
Gỉa sử n2 + 11n + 39 \(⋮49\)
\(\Rightarrow\)n2 + 11n + 39 \(⋮7\)
\(\Rightarrow\)n2 + 11n + 39 - 7n - 35 \(⋮7\)
\(\Rightarrow\)n2 + 4n + 4 \(⋮7\)
\(\Rightarrow\)(n + 2)2 \(⋮7\)
\(\Rightarrow\)n + 2 \(⋮7\)
Đặt n + 2 = 7t
\(\Rightarrow\)n2 + 11n + 39 = (7t - 2)2 + 11(7t - 2) + 39
\(\Leftrightarrow\)n2 + 11n + 39 = 49t2 + 49t + 21 ko chia hết cho 49
Điều này mâu thuẫn với điều ta giả sử.
Vậy n2 + 11n + 39 ko chia hết cho 49
Chứng minh rằng với mọi số tự nhiên n thì A = n2 + 7n + 7 không thể chia hết cho 49
G/s: A = \(n^2+7n+7⋮49\)
=> \(n^2⋮49\)
=> \(n⋮7\)
Đặt : n = 7 k
Khi đó: \(A=49k^2+49k+7⋮49\)
=> \(7⋮49\) vô lí
=> Điều g/s là sai
Vậy A không thể chia hết cho 49.
cảm ơn bn nhìu
Chứng tỏ rằng
a, (5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
b,(8n+1)(6n+5) không chia hết cho 2 với mọi số tự nhiên n
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
Chứng minh rằng với cùng 1 số tự nhiên n không thể đồng thời có ( 7n -1) chia hết cho 4 và ( 5n + 3) chia hết cho 12
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n^3 − 5n − 1 không là số chính phương