Những câu hỏi liên quan
PN
Xem chi tiết
VL
2 tháng 3 2016 lúc 12:46

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(S=1-\frac{1}{2012}\)

\(S=\frac{2011}{2012}\)

Chúc bạn học tốt nha !!!

Bình luận (0)
DH
2 tháng 3 2016 lúc 12:42

=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012

= 1-1/2012

= 2011/2012

Bình luận (0)
DH
2 tháng 3 2016 lúc 12:43

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow S=1-\frac{1}{2012}=\frac{2011}{2012}\)

Bình luận (0)
HL
Xem chi tiết
H24
Xem chi tiết
DC
19 tháng 4 2022 lúc 22:26

A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012

A = 1 - 1/2012

A = 2011/2012

B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012

B = 1/2 - 1/2012

B = 1005/2012

Bình luận (2)
NH
19 tháng 4 2022 lúc 22:30

a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(A=1-\dfrac{1}{2012}\)

\(A=\dfrac{2011}{2012}\)

 

b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)

\(B=\dfrac{1005}{4024}\)

 

Bình luận (0)
CC
Xem chi tiết
H24
10 tháng 2 2019 lúc 10:49

1.50+2.49+3.48+...+49.2+50.1=

= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)

= (2500+50).50:2-41650

= 63750-41650=22100


 
Bình luận (0)
CU
10 tháng 2 2019 lúc 10:51

2, 

A = 1.2 + 2.3 + 3.4 + ... + 2011.2012

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012

3A = 2011.2012.2013

A = 2011.2012.2013 : 3 

A = 2714954572

Bình luận (0)
H24
10 tháng 2 2019 lúc 10:53

1)A=22100

2)B=60236

Bình luận (0)
LC
Xem chi tiết
TL
31 tháng 3 2015 lúc 14:23

\(=2012.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\right)\)

\(=2012.\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2012-2011}{2011.2012}\right)\)

\(=2012.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(=2012.\left(1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2011}+\frac{1}{2011}\right)-\frac{1}{2012}\right)\)

\(=2012.\left(1-\frac{1}{2012}\right)=\frac{2012.2011}{2012}=2011\)

Bình luận (0)
H24
Xem chi tiết
DH
15 tháng 2 2016 lúc 15:49

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3

=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012

=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013

=> 3S = 2011.2012.2013

=> S = ( 2011.2012.2013 ) : 3

Bình luận (0)
NP
15 tháng 2 2016 lúc 15:45

3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

Bình luận (0)
DQ
15 tháng 2 2016 lúc 15:47

S=2714954572

Bình luận (0)
H24
Xem chi tiết
CV
Xem chi tiết
NN
10 tháng 3 2023 lúc 21:54

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)

 

Bình luận (0)
LM
Xem chi tiết
LB
14 tháng 3 2016 lúc 21:03

S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012

S= 1/2 - 1/2012 = 1005/2012

Bình luận (0)
HM
14 tháng 3 2016 lúc 21:07

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)

\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)

\(S=\frac{1}{2}-\frac{1}{2012}\)

\(S=\frac{1005}{2012}\)

\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)

\(A=1005\)

Bình luận (0)
TN
14 tháng 3 2016 lúc 21:09

\(\Leftrightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow S=\frac{1}{2}-\frac{1}{2012}=\frac{1005}{2012}\)

=>A=\(\frac{2012\cdot1005}{1\cdot2012}=\frac{1005}{1}=1005\)

Bình luận (0)