(1-1/1.2)+(1-1/2.3)+...+(1-1/2011.2012)
tinh tong:
S=1/1.2+1/2.3+1/3.4+...+1/2011.2012
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(S=1-\frac{1}{2012}\)
\(S=\frac{2011}{2012}\)
Chúc bạn học tốt nha !!!
=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012
= 1-1/2012
= 2011/2012
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow S=1-\frac{1}{2012}=\frac{2011}{2012}\)
tinh tong
S=1/1.2+1/2.3+....+1/2011.2012
Bài 15 tính tổng a) A= 1/1.2 +1/2.3 +1/3.4 +...+1/2011.2012 b) B= 1/2.4 +1/4.6 + 1/6.8+.,.......+1/2010.2012
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012
A = 1 - 1/2012
A = 2011/2012
B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012
B = 1/2 - 1/2012
B = 1005/2012
a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(A=1-\dfrac{1}{2012}\)
\(A=\dfrac{2011}{2012}\)
b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)
\(B=\dfrac{1005}{4024}\)
1) A= 1.50 + 2.49 + 3.48 + ... + 49.2 + 50.1
2) 1.2 + 2.3 + 3.4 + ... + 2011.2012
Làm ơn giải dùm mình
Ai nhanh nhất mik tik cho
1.50+2.49+3.48+...+49.2+50.1=
= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)
= (2500+50).50:2-41650
= 63750-41650=22100
2,
A = 1.2 + 2.3 + 3.4 + ... + 2011.2012
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012
3A = 2011.2012.2013
A = 2011.2012.2013 : 3
A = 2714954572
2012/1.2+2012/2.3+...+2012/2011.2012 = ?
\(=2012.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\right)\)
\(=2012.\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2012-2011}{2011.2012}\right)\)
\(=2012.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=2012.\left(1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2011}+\frac{1}{2011}\right)-\frac{1}{2012}\right)\)
\(=2012.\left(1-\frac{1}{2012}\right)=\frac{2012.2011}{2012}=2011\)
Tính tổng S=1.2+2.3+3.4+4.5+...+2011.2012
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013
=> 3S = 2011.2012.2013
=> S = ( 2011.2012.2013 ) : 3
3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)
3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012
3S=2011.2012.2013
S=2011.2012.2013:3
S=2714954572
Tính bằng thuật tính xích ma A 1.2+2.3+3.4+...+2011.2012
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
Tính A = 2012.S
S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012
S= 1/2 - 1/2012 = 1005/2012
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)
\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)
\(S=\frac{1}{2}-\frac{1}{2012}\)
\(S=\frac{1005}{2012}\)
\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)
\(A=1005\)
\(\Leftrightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow S=\frac{1}{2}-\frac{1}{2012}=\frac{1005}{2012}\)
=>A=\(\frac{2012\cdot1005}{1\cdot2012}=\frac{1005}{1}=1005\)