Tính \(\frac{1}{2x4}+\frac{1}{4x9}+\frac{1}{6x12}+....+\frac{1}{36x57}+\frac{1}{38x60}\)
Tính tổng
S=101/120+1/2x6+1/4x9+1/6x12+...+1/36x57+1/38x60
Tính tổng
S=101/120+1/2x6+1/4x9+1/6x12+...1/36x57+1/38x60
Tính tổng
S=101/120+1/2x6+1/4x9+1/6x12+...1/36x57+1/38x60
\(S=\frac{101}{120}+\frac{1}{2.3}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{19-18}{18.19}+\frac{20-19}{19.20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{20}\right)=\frac{101}{120}+\frac{19}{120}=\frac{120}{120}=1\)
Tìm x
2/2x3+2/3x4+...+2/x(x+1)=2007/2009
Tính tổng
S=101/120+1/2x6+1/4x9+1/6x12+...1/36x57+1/38x60
= 2.(1 / 2.3 + 1 / 3.4 + ..... + 1 / x (x + 1) = 2007/2009
= 2.(1/2 - 1/3 + 1/3 - +.......+ 1/x - 1/x+1) = 2007/2009
= 2.( 1/2 - 1/x+1) = 2007/2009
= 1 - 1/x+1 =2007/2009
= 1/x+1 = 1/2009
=> x + 1 = 2009
=> x = 2008
Ta có: 2/2.3 + 2/3.4 + .... + 2/x.(x+1) = 2007/2009
=> 2.[1/2.3+1/3.4+.....+1/x.(x+1)]=2007/2009
=> 2.(1/2-1/3+1/3-1/4 + .... + 1/x - 1/x+1) = 2007/2009
=> 2.(1/2-1/x+1)=2007/2009
=>1/2 - 1/x+1 = 2007/2009 : 2
=> 1/2 - 1/x+1 = 2007/4018
=> 1/x+1 = 2007/4018 +1/2
=> 1/x+1 =
= 2.(1 / 2.3 + 1 / 3.4 + ..... + 1 / x (x + 1) = 2007/2009
= 2.(1/2 - 1/3 + 1/3 - +.......+ 1/x - 1/x+1) = 2007/2009
= 2.( 1/2 - 1/x+1) = 2007/2009
= 1 - 1/x+1 =2007/2009
= 1/x+1 = 1/2009
=> x + 1 = 2009
=> x = 2008
tính A=\(\frac{1}{2}\left(\frac{1}{1x3}\right)\left(\frac{1}{2x4}\right)\left(\frac{1}{3x5}\right)x....x\left(\frac{1}{2015x2017}\right)\)
\(\frac{1}{4x9}+\frac{1}{9x14}+\frac{1}{14x19}+\frac{1}{44x49}\)
Đặt tổng trên là A
\(5A=\frac{5}{4x9}+\frac{5}{9x14}+\frac{5}{14x19}+...+\frac{5}{44x49}\)
\(5A=\frac{9-4}{4x9}+\frac{14-9}{9x14}+\frac{19-14}{14x19}+...+\frac{49-44}{44x49}\)
\(5A=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\)
\(5A=\frac{1}{4}-\frac{1}{49}\Rightarrow A=\frac{49-4}{4x5x49}=\frac{45}{4x5x49}=\frac{9}{4x49}\)
Tính:
\(\frac{1}{2x4}+\frac{1}{4x6}+\frac{1}{6x8}+..................+\frac{1}{96x98}+\frac{1}{98x100}\)
Nếu giải đúng có lời giải ,sẽ có 2 tick
\(\frac{1}{2x4}+\frac{1}{4x6}+...+\frac{1}{96x98}+\frac{1}{98x199}=\frac{2}{2x4}+\frac{2}{4x6}+...+\frac{2}{99x100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
A x2 = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{100}\)
A x2 = \(\frac{49}{100}\)
A = \(\frac{49}{200}\)
Tính:
\(\frac{1}{2x4}+\frac{1}{4x6}+\frac{1}{6x8}+...........+\frac{1}{96x98}+\frac{1}{98x100}\)
giải nhanh ,có lời giải cơ sở sẽ có tick
1/2*(2/2*4+2/4*6+...+2/98*100)=1/2*(1/2-1/4+1/4-1/6+...+1/98-1/100)
=1/2*(1/2-1/100)
=1/2*49/100
=49/200
k nha bạn
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
cho mình tròn 1550 nhé bạn
=2/2 4+2/4 6+2/6 8+...+2/96 98+2/98 100
=2/2-2/4+2/4-2/6+2/6-2/8+...+2/96-2/98+2/98-2/100
=2/2-2/100
=99/100
A=\(\frac{1}{2x4}+\frac{1}{4x6}+\frac{1}{6x8}+......+\frac{1}{98x100}\)
\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{98\times100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Vậy: \(A=\frac{49}{100}\)
Ta có:\(2A=2\left(\frac{1}{2.4}+\frac{1}{4.6}+....+\frac{1}{98.100}\right)\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)
Vậy giá trị của A là \(\frac{49}{200}\)