Tìm giá trị nhỏ nhất của biểu thức A=x^2 +y^2, biết x+y=3 A.9/2 B.2 C.4 D.3/2
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức sau
a,(2x-3)^4-2
b,(x^2-9)^2+/y-3/-1
c,-/x+5/+2
d,2-x^2
1. Tìm giá trị nhỏ nhất của biểu thức:
a, A=(x-2)2 -1
b, B=(x2-9)2 + |y-2|+10
2. Tìm giá trị lớn nhất của biểu thức:
a, C= 3/ (x-2)2 +5
b, D= -10-(x-3)2 - |y-5|
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
a/ Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
\(\Leftrightarrow A\ge-1\)
Dấu :"=" xảy ra khi : \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy ...
b/ tương tự
c/ Để C lớn nhất thì :
\(\left(x-2\right)^2+5\) nhỏ nhất
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+5\ge5\)
Dấu bằng xảy ra khi : \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy ...
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$
tìm giá trị nguyên của x để biểu thức có giá trị nhỏ nhất A = |x-12|+|y+9|+1997 B= (x^2 -16)+|y-3|-2 C=(5x-19)/(x-4)
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
tìm giá trị nhỏ nhất của biểu thức
a/A=x^2-x+1
b/B=x^2+x+1
c/C=x^2+y^2-4(x+y)+16
d/D=2x^2+8x+9
Tự nghiêng đầu mà đọc nha bạn ~~
a) tìm giá trị nhỏ nhất của biểu thức:
A=x^2-2x+9
B=x^2+6x-3
c=(x-1)(x-3)+9
b) tìm giá trị lớn nhất của biểu thức: D=-x^2-4x+7
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
hello, cần lm j z?
klkkkkkkkkkujoiyuj