2009-|x-2009|=x
CMR nếu 1/x+1/y+1/z=1/x+y+ z thì 1/x^2009+1/y^2009+1/z^2009=1/x^2009+y^2009+z^2009
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)
\(Đkxđ:x\ne2009;x\ne2010\)
Đặt \(t=x-2010\left(t\ne0\right)\)
\(\Rightarrow2009-x=-\left(t+1\right)\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)
\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)
\(\Leftrightarrow8t^2+8t-30=0\)
\(\Leftrightarrow4t^2+4t-15=0\)
\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)
\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)
Cho x^2009 +y^2009 > x^2008 +y^2009.
Chứng minh: x^2010 +y^2010 >= x^2009 + y^2009
tính tổng sau : 2010 x 2010 x 20092009 -2009 x 2009 x 2009 x 20102010/2009 x 20052005
tim x
(2009-x)^2+(2009-x)×(x-2010)+(x-2010)^2/(2009)^2-(2009-x)×(x-2010)+(x-2010)^2=19/49
tìm x biết :
(2009 - x^2) + ( 2009 - x^2)( x - 2010) + ( x - 2010) / (2009 - x^2) - ( 2009 - x^2)( x - 2010) + ( x - 2010 ) = 19/49
tính
(1001/1007-2009/2015)x(1002/1008-2009/2015)x.....x(2014/2020-2009/2015)x(2015/2021-2009/2015)=
Tìm x : (2009-x)2+(2009-x)(x-2010)+(x-2010)2/(2009-x)2-(2009-x)(x-2010)+(x-2010)2=19/49
Cho x=2010.Tính giá trị biểu thức :A=x2010-2009*x2009-2009*x2007-...-2009*x1
TÌM X
{[2009-x]^2+[2009-x][x-2010]+[x-2010]^2}/{[2009-x]^2-[2009-x][x-2010]+[x-2010]^2}=19/49