tinh \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}\)
tinh \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}\)
\(A=\frac{1}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{96\cdot101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\cdot\frac{100}{101}\)
\(A=\frac{20}{101}\)
A = 1/5(1-1/6+1/6-1/11+1/11-1/16+.....+1/96-1/101)
= 1/5(1-1/101)=20/101
1,B=\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..............+\frac{3}{96.101}\)
b=\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..............+\frac{3}{96.101}\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\frac{100}{101}\)
\(\Leftrightarrow B=\frac{60}{101}\)
Tính tổng\(S=\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)
\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)
\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)
\(S=\frac{60}{101}\)
\(\frac{100}{101}\)nha
bạn tự tính
tíc mình nha
S=3/1.6+3/6.11+3/11.16+...+3/96.101
=>S=1/1.6+1/6.11+1/11.16+...+1/96.101
S=1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101
S=1-1/101
S=100/101
C = \(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)+ \(\frac{1}{11.16}\)+ ........+ \(\frac{1}{96.101}\)
Giải dùm mik chút nhoa hôn hôn
\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)
\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)
\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)
\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)
\(5C=1-\frac{1}{101}\)
\(C=\frac{100}{\frac{101}{5}}\)
Tính tổng: S
\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..+\frac{3}{96.101}\)
\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)
\(=3.\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\frac{100}{101}\)
\(=\frac{60}{101}\)
Tính A= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{496.501}\)
\(A=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}\right):5\)
\(A=\left(1-\frac{1}{501}\right):5\)
\(A=\frac{500}{501}:5=\frac{100}{501}\)
Ta có : \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\right) \)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{501}\right)\)
\(\Rightarrow\) \(A=\frac{1}{5}.\frac{501-1}{501}=\frac{1}{5}.\frac{500}{501}\)
\(\Rightarrow\) \(A=\frac{1.500}{5.501}=\frac{20}{1.501}=\frac{20}{501}\)
Vậy \(A=\frac{20}{501}\)
mk nhầm 1 chút : \(A=\frac{1.100}{5.101}=\frac{100}{1.101}=\frac{100}{101}\)
Vậy \(A=\frac{100}{101}\) chứ ko phải bằng \(\frac{20}{101}\) đâu nhé mong bn thông cảm!!!!
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.........+\frac{1}{46.51}\)
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{46.51}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{46.51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(\frac{51}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\frac{50}{51}\)
\(=\frac{10}{51}\)
Chúc bạn học tốt !!!
Đặt \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{46\cdot51}\)
\(5A=5\left(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{46\cdot51}\right)\)
\(5A=\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{46\cdot51}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{46}-\frac{1}{51}\)
\(5A=1-\frac{1}{51}\)
\(5A=\frac{50}{51}\Rightarrow A=\frac{50}{51}:5\Rightarrow A=\frac{10}{51}\)
Tính:A=\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.561}\)
Nhân A với 5 ta được
A .5=5.(1/1.6 +1/6.11+1/11.16+....+1/496.561)
A .5=5/1.6+5/6.11+5/11.16+...+5/496.561
A .5=1-1/6+1/6-1/11+1/11-1/16+...+1/496-1/561
A .5=1-1/561
A .5=560/561
A =560/561 : 5 =112/561
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.561}\)
\(=\left(\frac{1}{1}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{16}\right)+...+\left(\frac{1}{496}-\frac{1}{561}\right)\)
\(=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{496}-\frac{1}{561}\)
\(=\frac{1}{1}-\frac{1}{561}\)
\(=\frac{561}{561}-\frac{1}{561}\)
\(=\frac{560}{561}\)
\(\Rightarrow\) Vậy, \(A=\frac{560}{561}\)
=1-1/6+1/6-1/11+1/11-1/16+...+1/496-1/561
=1-1/561
=560/561