Những câu hỏi liên quan
LH
Xem chi tiết
ST
24 tháng 7 2018 lúc 21:08

Câu hỏi của Bùi Quang Vinh - Toán lớp 6 - Học toán với OnlineMath fedg

Bình luận (0)
ON
3 tháng 3 2019 lúc 10:20

1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240(p4−1) ⋮ 240 và (q4−1) ⋮ 240(q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240(p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)(p4−1)=(p−1)(p+1)(p2+1)
vì pp là số nguyến tố lớn hơn 55 nên pp là số lẻ
⟹(p−1)(p+1)⟹(p−1)(p+1) là tích của 22 số lẻ liên tiếp nên chia hết cho 88 (1)(1)
Do p>5p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)(2)
mặt khác vì pp là số lẻ nên p2p2 là số lẻ →p2+1→p2+1 là số chẵn nên p2+1 ⋮ 2p2+1 ⋮ 2 (3)(3)
giờ cần chứng minh p4−1 ⋮ 5p4−1 ⋮ 5:
pp có thể có dạng:
p=5k+1→p−1 ⋮ 5p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5kp=5k mà pp là số nguyến tố nên k=1→p=5k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5⟹p4−1 ⋮ 5 (4)(4)
từ (1),(2),(3),(4)(1),(2),(3),(4), suy ra p4−1p4−1 chia hết cho 2.3.5.82.3.5.8 hay p4−1 ⋮ 240p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240q4−1 ⋮ 240
Kết luận.......................

Bình luận (0)
TH
Xem chi tiết
H24
Xem chi tiết
H24
2 tháng 1 2016 lúc 16:39

click chữ xanh nha:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
H24
2 tháng 1 2016 lúc 16:41

Đây thì chi tiết hơn:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
NQ
2 tháng 1 2016 lúc 16:44

Chia hết cho 240  = 24.3.5

p4 - q4 = (p2 - q2)(p2 + q2)

p;q cũng loại chẵn lẻ

Thì (p2 - q2)(p2 + q2) chia hết cho 16

p;q khác loại

Thì (p2 - q2)(p2 + q2) không chia hết cho 16 nhưng p;q là số nguyên tố lớn hơn 5 < = > loại

Nếu p;q cùng chia 3 dư 1 hoặc cùng chia 3 dư 2 thì

(p2 - q2) chia hết cho 3 < = > Tích chia hết cho 3

Nếu p ; q có số dư khác nhau khi chia cho 3 (khác 0)

Thì p2 - q2 chia hết cho 3 < = ) Tích chia hết cho 3

p ; q chia 5 dư 1;2;3;4 

Do đó (p2 - q2)(p2 + q2) chia hết cho 5

Vậy (p2 - q2)(p2 + q2) chia hết cho 16.3.5 = 240

=> ĐPCM 

 

Bình luận (0)
LA
Xem chi tiết
TH
Xem chi tiết
TN
1 tháng 4 2015 lúc 23:08

p nguyên tố>5 ==>p lẻ, p không chia hết cho 3 => p^4 chia 3 dư 1 => p-1 chia hết cho 3
p nguyên tố .5 => p lẻ => p^4-1 chia hết cho 16
p nguyên tố .5 => p có tận cùng 1 3 7 9 => p^4 có tận cùng 1 => p^4-1 chia hết cho 10
p chia hết cho 3,10,16 => chia hết cho 240(240 là bội chung nhỏ nhất của 3,10,16)

 

Bình luận (0)
H24
7 tháng 2 2020 lúc 23:31

Mình sắp ngủ rồi nên giúp bạn câu này, kết bạn nha!

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p>5 nên p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3  =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 . 

Vậy (p4-1)-(q4-1) = p4 - q4 cho 240

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
2U
2 tháng 1 2020 lúc 15:38

Ta có: p^4-q^4-(p^4-1)-(q^4-1); 240 - 8.2.3.5. Ta cần chứng minh p^4-1 chia hết cho 240

- Do p>5 nên p là số lẻ

+ Mặt khác: p^4-1-(p-1)(p+1)(p^2+1)=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p^2 là số lẻ => p^2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p^4 - 1 chia hết cho 3........

Tương tự ta cũng có q^4 - 1 chia hết cho 240 .

Vậy (p^4-1)-(q^4-1) = p^4 - q^4 cho 240

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
TM
16 tháng 1 2016 lúc 22:50

Mình gợi ý nè : Tách p^4 - q^4 thành (p - 1)(p + 1)(p2 - 1)

Chứng minh p^4 và q^4 chia hết cho 240

Chỉ cần chứng mình nó chia hết cho 16; 3 và 5.

Dễ chứng minh rồi, bạn tự làm nha !!!

Bình luận (0)
TM
16 tháng 1 2016 lúc 22:51

Mình viết nhầm : chứng minh q4 - 1 và p4 - 1 chia hết cho 240

Bình luận (0)
HG
25 tháng 3 2016 lúc 21:16

Ta co

p^4 - q^4=(p^2)^2 - (q^2)^2

Phai chung minh hieu tren chia het cho 3;5;16

Do p nguyen to > 5 nen p khong chia het cho 3 suy ra p binh tat ca mu 2 va q binh tat ca mu 2 chia 3 chi co the du 1;2 do p binh tat ca mu 2 va q binh tat ca mu 2 la so chinh phuong nen chia 3 du 1, hieu cua chung chia het cho 3

chung minh cho 5 tuong tu

Lai co (p^2)^2-(q^2)^2=(p^2-q^2).(p^2+q^2)

p^2 va q^2 la so chinh phuong le nen chia 8 chi co the du 1 hieu cua chung chia het ch 8

p^2+q^2=le+le=chan, chia het cho 2

h tren chia het cho 8.2=16

do 3,5,16 nguen to cung nhau nen hieu can chung minh chia het cho 3.5.16=240

duoc dieu can chung minh

the la ra ket qua

Bình luận (0)