Tìm các bộ ba số nguyên tố a,b,c thỏa mãn: abc<ab+bc+ca
Bài 13. Có bao nhiêu số có 3 chữ số mà mỗi chữ số của nó là ước nguyên tố của chúng? Ví dụ: Số abc thỏa mãn thì a, b, c là các ước nguyên tố của abc
Bài 14. Tìm các số nguyên tố a, b, c biết \(\dfrac{abc}{a+b+c}\) = 3.
Bài 15. Tìm các số nguyên tố p, q sao cho 7p + q và pq + 11 cũng là các số nguyên tố.
Bài 21. Một số tự nhiên n có 30 ước số. Chứng minh rằng tích tất cả các ước của n là n 15.
nam moooooooooooooooooooooooooooooooo
Bài 4: Tìm tất cả các bộ ba số nguyên tố a,b,c thỏa mãn a.b.c<a.b+b.c+a.c.
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
ng th anh
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
Bài 16. Tìm tất cả các số nguyên tố abc, thỏa mãn abc = a + b + c + 263.
\(\overline{abc}=100a+10b+c=a+b+c+263\)
\(\Rightarrow99a+9b=263\)
\(\Rightarrow9\left(11a+b\right)=263\)
mà \(263\) là số nguyên tố
Nên không tồn tại \(\left(a;b\right)\) thỏa đề bài.
Tìm ba số a,b,c nguyên tố thỏa mãn : abc=3(a+b+c)
hộ vs ạ
Tìm tất cả các số nguyên tố a;b;c thỏa mãn a^2+b^2+c^2=abc
Tìm bộ ba số nguyên dương a,b,c thỏa mãn: abc+1 chia hết cho a2+b2
tìm bộ ba số nguyên tố a, b, c thoả mãn : a^c-b, c^a+b đều là số nguyên tố
Tìm tất cả các bộ ba số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện.
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
A = 2, B = 7, C = 19
A = 2, B = 7, C = 23
A = 2, B = 7, C = 29
A = 2, B = 7, C = 31
A = 2, B = 7, C = 37
A = 2, B = 7, C = 41
A = 2, B = 11, C = 13
A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài .
Ta có
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
\(\Leftrightarrow\frac{2}{3}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{7}{10}\)
Không mất tính tổng quát ta giả sử \(a< b< c\)
\(\Rightarrow\frac{2}{3}< \frac{3}{a}\Rightarrow a=\left(2,3\right)\)(vì a nguyên tố)
Thế lần lược các giá trị a vào rồi làm tương tự như bước trên sẽ tìm được b, c (nhớ loại giá trị không đúng nhé)
Vai trò a, b, c là như nhau nên các giá trị a, b, c có thể đổi vị trí cho nhau nên chú ý để không bỏ xót nghiệm nhé
Từ giả thiết suy ra :
2/3<1/a+1/b+1/c<7/10
Không giảm tính tổng quát giả sử a>b>c>1a>b>c>1
Suy ra : 2 /3<3/ c⇒2c<9
Do đó c∈{2;3}c∈{2;3}
∙∙ Với c=2c=2 suy ra 2/3<1/2+1/a+1/b<7/10⇒1/6<1/a+1/b<1523<12+1a+1b<710⇒16<1a+1b<15 (1)
⇒16<2b⇒16<2b và ⇒1b<15⇒1b<15
Do đó b∈{7;11}b∈{7;11}
Với b=7b=7 từ (1) suy ra 142<1a<235⇒a∈{19,23,29,31,37,41}142<1a<235⇒a∈{19,23,29,31,37,41}
Với b=11b=11 từ (1) suy ra 566<1a<655⇒a=13566<1a<655⇒a=13 (do a>ba>b )
∙∙ Với c=3c=3 từ giả thiết suy ra
13<1a+1b<113013<1a+1b<1130 (*)
⇒13<2b⇒b<6⇒b=5⇒13<2b⇒b<6⇒b=5 (Do b>cb>c )
Thay b=5b=5 vào (*) ta có 6<a<152⇒a=76<a<152⇒a=7
Vậy ...............
nói chung là vào http://diendantoanhoc.net/topic/109893-t%C3%ACm-t%E1%BA%A5t-c%E1%BA%A3-c%C3%A1c-b%E1%BB%99-ba-s%E1%BB%91-nguy%C3%AAn-t%E1%BB%91-abc-%C4%91%C3%B4i-m%E1%BB%99t-kh%C3%A1c-nhau-th%E1%BB%8Fa-m%C3%A3n-%C4%91i%E1%BB%81u-ki%E1%BB%87n-20abc30abbcca21abc03/
Tìm tất cả các số nguyên tố a,b,c thỏa mãn abc < ab + bc + ca
Tìm tất cả các bộ 3 số nguyên tố (a,b,c) sao cho: abc < ab+bc+ac