Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
Chứng minh:16n-15n-1 chia hết cho 225 với mọi n thuộc N*
chứng minh rằng 16n-15n-1 chia hết cho 225
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Kết luận: Vậy 16n – 15n – 1 ⋮ 225.
1 cm rằng
16^n-15n-1 chia hết cho 225
2 cm rằng
1890^1930+1945^1975+1 chia hết cho 7
3 tìm tất cả các số tự nhiên n để
2^n-1 chia hết cho 7
4 chứng minh rằng với mọi số tự nhiên n thì 2^n+1 chia hết cho 7
Chứng minh rằng:
a. 1110 - 1 chia hết cho 100
b. 9 . 10n + 18 chia hết cho 27
c. 16n - 15n - 1 chia hết cho 255
1.tìm số tự nhiên n để :2^2n+2^n+1 chia hết cho 7
2.cho a,bthuộc z thỏa mãn (16a+17b ).(17a+16b)chia hết cho 11 chứng minh rằng (16a+17b).(17a+16b)chia hết cho 121
3cho a=4^n+15n-1 với n thuộc N chứng minh rằng a chia hết cho 9
giải chi tiết giùm mình nhé!
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
Chứng minh với n là số tự nhiên thì
a) \(2^{4n}-1\)chia hết cho 15
b) \(16^n-15n-1\)chia hết cho 225
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Chứng minh rằng : \(4^n+15n-10\) chia hết cho 9 ( với n thuộc N )
Giúp mình với mọi người !!!
Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1
Giả sử n = K đúng với mọi n thuộc N
\(\Rightarrow4^K+15K-10⋮9\)
Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1
Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)
\(=4^K.4+15K+5\)
\(=4^K.4+4.15K-4.10+45\)
\(=4\left(4^K+15K-10\right)+5.9\)
Do \(4^K+15K-10⋮9\left(B2\right)\)
\(45⋮9\)
\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1
Vậy đpcm.
PP quy nạp toán học lớp 11