Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
LN
Xem chi tiết
VT
Xem chi tiết
NN
9 tháng 1 2016 lúc 11:05

  Đặt Un = 16^n-15n-1 
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225 
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225 
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được 
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được 
_________________- 

Với việc chứng minh Vk = 16^k - 1 chia hết cho 15 
- Xét k = 1 , ta có V1 = 15 chia hết cho 15 
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15 
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được 
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2) 

______________ 

Vậy từ (1) và (2) ta có được điều phãi chứng minh

Bình luận (0)
SN
9 tháng 1 2016 lúc 11:05

16 đồng dư với 1(mod 15)

=>16n đồng dư với 1(mod 15)

=>16n-1 đồng dư với 0(mod 15)

=>16n-1 chia hết cho 15

mà 15n chia hết cho 15

=>16n-15n-1 chia hết cho 15(đpcm)

Bình luận (0)
NM
24 tháng 2 2018 lúc 17:54

Với n=1 thì 16– 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225

 Giả sử 16– 15k – 1 ⋮ 225

 Ta chứng minh 16k+1 – 15(k+1)  – 1 ⋮ 225

Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1

= (16– 15k – 1) + 15.16– 15

Theo giả thiết qui nạp 16– 15k – 1 ⋮ 225

Còn 15.16– 15 = 15(16– 1) ⋮ 15.15 = 225

Kết luận: Vậy 16– 15n – 1 ⋮ 225.

Bình luận (0)
QN
Xem chi tiết
NL
Xem chi tiết
HD
Xem chi tiết
NC
12 tháng 11 2019 lúc 18:03

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
19 tháng 7 2019 lúc 16:45

4n + 15n – 1 chia hết cho 9

Đặt An = 4n + 15n – 1

với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9

+ giả sử đúng với n = k ≥ 1 nghĩa là:

Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)

Ta cần chứng minh: Ak + 1 chia hết 9

Thật vậy, ta có:

Ak + 1 = 4k+1 + 15(k + 1) – 1

         = 4.4k + 15k + 15 – 1

         = 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1

         = 4.(4k +15k- 1) – 45k + 18

         = 4. Ak + (- 45k + 18)

Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9

Nên Ak + 1 ⋮ 9

Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 1 2021 lúc 21:28

a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)

\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)

b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)

mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)

\(\Rightarrow16^n-15n-1⋮15\)

Bình luận (0)
 Khách vãng lai đã xóa
SN
Xem chi tiết
PD
10 tháng 1 2019 lúc 22:55

Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1

Giả sử n = K đúng với mọi n thuộc N

\(\Rightarrow4^K+15K-10⋮9\)

Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1

Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)

\(=4^K.4+15K+5\)

\(=4^K.4+4.15K-4.10+45\)

\(=4\left(4^K+15K-10\right)+5.9\)

Do \(4^K+15K-10⋮9\left(B2\right)\)

\(45⋮9\)

\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1

Vậy đpcm.

PP quy nạp toán học lớp 11

Bình luận (0)