Tính tổng:S=(1-1/2).(1-1/3).(1-1/4). ... .(1-1/2016)
TÍNH TỔNG:S=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/100(1+2+3+...+100)
Tính tổng:S=1+2+3+4+...+2107+2017
Tính tổng:S=2+4+6+...+98+100
Đang cần gấp sắp đi học
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550
Tính tổng:S=1+2+3+...+200
S=1+1/2+1/4+1/8+...+1/1024
S=1.2+2.3+3.4+...+99.100
Giai nhanh giup minh trong 15 phut nhe
số các chữ số đó là
(200-1):1+1=200
số cặp đó là
200:2=100
tổng 1 cạp là
200+1=201
giá trị bt là
201.100=20100
Ta có : \(S=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1024}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+.....+\frac{1}{1024}\)
\(\Rightarrow2S-S=2-\frac{1}{1024}\)
\(\Rightarrow S=\frac{2047}{1024}\)
Tính tổng:
S = 1 x 2 + 2 x 3 + 3 x 4 + .... + 98 x 99 + 99 x 100
\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)
Tính tổng:S=1+2+2^2+2^3+2^4+...+2^100.Chứng minh rằng S chia hết cho 3 và tìm x biết rằng:S+1=2x
S=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
Tính tổng:S1=1-4+7-10+...+31-34
tính gt của biểu thức:
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2016.(1+2+3+...+2016)
tính a: [1-1/2*2]*[1-1/3*3]*[1-1/4*4]*[1-1/5*5]*......*[1-1/2015*2015]*[1-1/2016*2016]
Tính tổng:S = 1^2+2^2+3^2+....+n^2
\(S=1^2+2^2+3^2+...+n^2\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
Theo dạng tổng quát: \(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)}{6}-\frac{3n\left(n+1\right)}{6}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)
\(=\frac{n\left(n+1\right).\left[2\left(n+2\right)-3\right]}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Vậy \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có : \(S=1^2+2^2+3^2+...+\)\(n^2\)
\(\Rightarrow S=\frac{n.\left(n+1\right)\left(n+2\right)}{2}\)
Xin lỗi mình nhớ nhầm công thức : \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)