cmr tồn tại 1 số gồm toàn chữ số 0 và 1 chia hết cho 17
Chứng minh rằng tồn tại 1 số chia hết cho 17
a, Gồm toàn các chữ số 1 và 0
b, Gồm toàn chữ số 1
Chứng minh rằng tồn tại số chỉ gồm toàn chữ số 0 và 1 chia hết cho 2011. Có tồn tại số chỉ gồm toàn chữ số 1 chia hết cho 2011 hay không?
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
CMR tồn tại 1 số tự nhiên gồm toàn chữ số 6 mà chia hết cho 31
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
CMR: có 1 số gồm toàn CS 1 chia hết cho 19
CMR tồn tại 1 số gồm CS 0 và 1 chia hết cho 2015
CMR: có thể tìm đc 1 STN K sao cho 19K - 1 chi hết cho 10
Chọn dãy
1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)
Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19
2 số đó là
111..1(a c/s 1); 11..1(b c/s 1) [1< a < b < 20]
=>111..1 - 11..1 chia hết cho 19 [b c/s 1 - a c/s 1]
=>111...100...0 chia hết cho 19 [b - a c/s 1 ; a c/s 0]
=>11..1 x 10a chia hết cho 19 [b-a c/s 1]
Mà (19;10)=1 =>(19;10a)=1
=> 111..1 chia hết cho 19 với b-a c/s 1
Câu 3
Giả Sử: k = 4n
=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10
Vậy có thể tìm đc 1 STN k chia hết cho 10
xét dãy : 191,192,...,1911
các số tự nhiên khi chia cho 10 có 10 ước là: 0,1,2,..,9
Mà dãy số trên có 11 số nên tồn tại ít nhất 2 số tn có cùng số dư khi chia cho 10
gọi 2 số đó là: 19m và 19n
(11>m>n>1 m,n=1)
19m-19n chia hết cho 10
19n.(19m-n -1) chia hết cho 10
mà (10,19)=1 (19n,10)=1
19m-n-1 chia hết cho 10
19k-1 chia hết cho 10 (k=m-n)
19k-1 chia hết cho 10q
vậy tồn tại 1 số tn k sao cho 19k-1 chia hết cho 10
CMR tồn tại 1 số tự nhiên chia hết cho 13 gồm toàn chữ số 7
Chọn dãy 7;77;777;7777;..;77777...77(số cuối có 15 chữ số 7)
Chắc chắn trong dãy có cùng số dư khi chia cho 13
2 số đó là : 77..7 ( a chữ số 7) và 777...7 ( b c/s 7) (1=<a<b=<15)
=>777...7-77..7 chia hết cho 13
=> 777..70...0 chia hết cho 13
=> 777..7 x 10a chia hết cho 13
Mà (13;10) => (13;10a)=1
=> 777..77 chia hết cho 13 vói b-a chữ số
Chứng minh rằng tồn tại số tự nhiên gồm toàn các chữ số 0 và 1 chia hết cho 23
Đó là số \(10000101\)
Chứng minh rằng tòn tại 1 số chia hết cho 17
a, Gồm toàn các chữ số 1 và 0
b, Gồm toàn chữ số 1