Những câu hỏi liên quan
NP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
Xem chi tiết
NL
24 tháng 8 2019 lúc 19:55

a.Vì x,y là số nguyên dương

     => 1003 và 2y cũng là số nguyên dương                              

 Vì 2008 là số chẵn 

 mà 2y cũng là số chẵn

=> 1003x là số chẵn

Vì 1003 là số lẻ 

mà 1003x là số chẵn

=> x là số chẵn 

=> x chia hết cho 2 (đpcm)

                       Vậy ta có đpcm

Bình luận (0)
LG
Xem chi tiết
VT
18 tháng 5 2016 lúc 13:58

3)PT x3+y3+z3=nx2y2z2x3+y3+z3=nx2y2z2 (*)
Không mất tỉnh tổng quát . Giả sử x≥y≥zx≥y≥z 
Xét x=1x=1 suy ra y=z=1y=z=1 và n=3n=3  
Bây giờ ta xét x≥2x≥2 
Như vậy thì theo phương trình (∗)(∗) thì 
x3+y3+z3≥(xyz)2x3+y3+z3≥(xyz)2 . Chia cả 22 vế cho x3x3 ta được : 
y3+z3x3≥(yz)2x−1y3+z3x3≥(yz)2x−1 (2)
Mà y3+z3x3≤2y3+z3x3≤2 
Suy ra x≥(yz)23x≥(yz)23 
Mà ta lại có x2|(y3+z3)x2|(y3+z3) nên 2y3≥y3+z3≥x22y3≥y3+z3≥x2 
Từ đó ta được y4z49≤x2≤2y3y4z49≤x2≤2y3
Suy ra yz4≤18⇔z≤4√18yz4≤18⇔z≤184 từ đó ta có z<2z<2 
Suy ra z=1z=1 
Thế vào (2) ta có : y2x−1≤y3+1x3≤1+1x3y2x−1≤y3+1x3≤1+1x3 
Suy ra y2≤2x+1x2≤2x+14y2≤2x+1x2≤2x+14  
Suy ra 2x≥y2−14>y22x≥y2−14>y2 suy ra x≥y22x≥y22 (3)
Mà y3+z3≥x2y3+z3≥x2 suy ra y3+1≥x2y3+1≥x2
Lại từ (3) ta có x2≥y44x2≥y44 
Từ đó suy ra y3+1≥x2≥y44y3+1≥x2≥y44 
(2x)32≥y3(2x)32≥y3
Ta có bất phương trình (2x)32+1≥x3(2x)32+1≥x3 
Suy ra x≤2x≤2 
Đến đây ta sử dụng bất phương trình x≥y22x≥y22 rồi tìm ra nn 

Bình luận (0)
NN
Xem chi tiết
TM
Xem chi tiết
NM
Xem chi tiết
DL
6 tháng 6 2016 lúc 23:22

Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.

Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.

1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

Ta thấy y=0; 1 không phải là nghiệm của bài toán.Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.Với y>=3 thì:Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)

\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)

Thay vào (1) ta có:  \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)

\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)

\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)

\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)

\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)

Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.

Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
Bình luận (0)
TN
5 tháng 6 2016 lúc 22:04

câu 1:

y=z=vô nghiệm

Bình luận (0)
H24
6 tháng 6 2016 lúc 17:05

 Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp. 
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì? 
------ 
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm. 
Tôi dùng phương pháp "cần cù" 
--------------- 
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 

(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 

Bình luận (0)