Chung minh \(1+\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<2\)
chung minh rang \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) <1
đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2
B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
Ta có :.......
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
\(<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99.100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)
vậy ra cái bạn phải chứng minh (theo tính chất bắc cầu )
Chung minh: C =\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{^{6^2}}.....+\frac{1}{100^2}< \frac{1}{2}\)
C=1/2*2+1/4*4+1/6*6+...+1/100*100.
C<1/4+1/2*4+1/4*6+1/6*8+...+1/98*100.
C<1/4+1/2*(2/2*4+2/4*6+2/6*8+...+2/98*100).
C<1/4+1/2*(1/2-1/4+1/4-1/6+1/6-1/8+...+1/98-1/100).
C<1/4+1/2*(1/2-1/100).
C<1/4+1/2*49/100.
C<1/4+49/200.
C<1/4+50/200=1/2.
Vậy C<1/2.
ta có \(\frac{1}{2\cdot2}+\frac{1}{4\cdot4}+\frac{1}{6\cdot6}+.........+\frac{1}{100\cdot100}\)
\(< \frac{1}{4}+\frac{1}{2x4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+........+\frac{1}{98\cdot100}\)
\(\frac{1}{4}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98\cdot100}\right)\)
=\(\frac{1}{4}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{4}+\frac{1}{2}\cdot\frac{49}{100}=\frac{1}{4}+\frac{49}{200}\)
tự làm nốt
2, chung minh rang
a, \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{^{3^2}}+\frac{3}{3^4}+........+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
à chỗ 2=2;4=2 bạn sửa thành : \(2=2^1;4=2^2\) nhé
chung minh rang A=\(\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}<\frac{2}{9}\)
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
Cho M =\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}vaN=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
a) Tinh tich M.N
b) chung minh M<N
c) Chung minh M < \(\frac{1}{10}\)
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)
Chung minh rang: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
Dat A=1/3-2/32+3/33-4/34+...+99/399-100/3100
3A=1-2/3+3/32-4/33+...+99/398-100/399
3A+A=1-1/3+1/32-1/33+...+1/398-1/399-100/3100=4A
4A.3=3-1+1/3-1/32+...+1/397-1/398-100/399=12A
4A+12A=3-100/399-1/399-100/3100
16A=3-300/3100-3/3100-100/3100=3-403/3100<3
A<3/16
Chung to...
Chung minh rang A=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>10\)>10
Ta có :
\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được :
\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\) ( đpcm )
Vậy \(A>10\)
Chúc bạn học tốt ~
Cho M = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
chung minh rang M < 3/4
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\). chung minh 1/6<b<1/4
\(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{1}{6}+\frac{1}{6.5}-\frac{1}{101}>\frac{1}{6}\)
=> \(\frac{1}{6}< B< \frac{1}{4}\)