Những câu hỏi liên quan
DH
Xem chi tiết
LH
10 tháng 8 2015 lúc 11:07

Thấy số chính phương là các số có dạng 3k hoặc 3k+1

A=1015+1=1000.....000000000001

Tổng các chữ số của A là 1+0+0+...+0+1=2

2 có dạng 3k+2

=> A có dạng 3k+2 nên A ko phải số chính phương

B chia hết cho B thì chắc chia hết cho 3

C thì            

Bình luận (0)
TL
10 tháng 8 2015 lúc 11:35

2) x2 + y= 3z=> x+ y chia hết cho 3 

Vì x; y2 là  số chính phương nên x; ychia cho 3 dư 0 hoặc 1

Nếu x2 hoặc y hoặc x2 và  y chia cho 3 dư 1 => x2 + y chia cho 3 dư 1 hoặc 2 ( trái với đề bai)

=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố  => x; y đều chia hết cho 3 

=> x2; ychia hết cho 9 => 3z2 chia hết cho 9 => zchia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3

Vậy...

Bình luận (0)
H24
8 tháng 6 2018 lúc 10:20

Bài 2:

x2 + y= 3z=> x+ y chia hết cho 3 

Vì x; ylà  số chính phương nên x; ychia cho 3 dư 0 hoặc 1

Nếu x2 hoặc y hoặc x2 và  y chia cho 3 dư 1

=> x2 + y chia cho 3 dư 1 hoặc 2

=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố 

 => x; y đều chia hết cho 3 

=> x2; ychia hết cho 9

=> 3z2 chia hết cho 9

=> zchia hết cho 3 ;

3 là số nguyên tố

=> z chia hết cho 3

Vậy................

hok tốt

Bình luận (0)
TT
Xem chi tiết
H24
2 tháng 9 2017 lúc 14:48

 với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

hình như bài của mik làm có j đó sai sai

Bình luận (0)
H24
2 tháng 9 2017 lúc 14:49

với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

Bình luận (0)
ND
2 tháng 9 2017 lúc 15:06

với mọi x, y, z ta có:

(x-y)^2 +(y-z)^2+ (z-x)^2>=0

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0

<=>(x+y+z)^2 >= 3(x+y+z)

<=>[(x+y+z)^2]/3 >= xy+yz+ zx

=>xy +yz + zx <=3

dấu = xảy ra khi x=y=z =1 

Bình luận (0)
LT
Xem chi tiết
LK
Xem chi tiết
GL
4 tháng 7 2019 lúc 22:04

Ta thấy (x2,y2,z2)\(⋮\)2 nên xảy ra 2 trường hợp

Trong 3 số x,y,z có 1 số chẵn,hai số lẻ,chẳng hạn x chẵn,y và z lẻ. Khi đó VT chia 4 dư 2,còn vế phải 2xyz chia hết cho 4 (loại)Ba số x,y,z đều chẵn. Đặt x=2x1,y=2y1,z=2z1 rồi chứng minh rằng nghiệm x1,y1,z1 cũng là số chẵn ( phương pháp lùi vô hạn)

mà xyz khác 0 nên không tồn tại x,y,z thỏa mãn đề bài

Bình luận (0)
H24
Xem chi tiết
AN
22 tháng 11 2017 lúc 8:44

Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:

\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn

\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.

\(\left(x-y\right)^3\)lẻ; ​​\(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.

\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Vậy PT vô nghiệm.

Bình luận (0)
HH
21 tháng 11 2017 lúc 19:16

Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được

Bình luận (0)
SF
22 tháng 11 2017 lúc 19:18

내년 SKT T1이 다시 돌아와 삼성 갤럭시를 이길 것입니다

Bình luận (0)
TD
Xem chi tiết
LD
Xem chi tiết
NM
Xem chi tiết
BT
Xem chi tiết
NQ
28 tháng 5 2020 lúc 19:46

dm may

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 5 2020 lúc 20:42

aza tiểu tử thiệt là hung  zữ

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 5 2020 lúc 21:47

tú kết bạn vs tui nh , thả tim nè

Bình luận (0)
 Khách vãng lai đã xóa