tìm số tự nhiên x biêt rằng:1/3+1/6+1/10+.......+2/x(x+1)=2015/2017
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số tự nhiên x biết rằng: 1/3+1/6+1/10+...+2/x(x+1)=2015/2017
= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)
= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]
=2[1/2-1/(x+1)]= (x-1)/(x+1)
= 2001/2003
==> x=2002
Mình Giúp Họ Giải Toán Đầu tiên Mà Họ Lại Làm Ngơ sai bét
tìm số tự nhiên x, biết rằng : 1/3+1/6+1/10+...+2phầnx(x+1)=2015/2017
Tìm số tự nhiên x , biết rằng :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
1/3 + 1/6 + 1/10 + .......+2/x(x + 1) = 2015/2017
=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017
=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017
=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]
=> (1/2 + -1/x+1) .2 =2015/2017
=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.
=> -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017
=> -1/x+1 = -1/2017
=>x+1=2017
=> x= 2016
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
tìm số tự nhiên x biết : 1/3+1/6+1/10+...+2/ x(x+1)=2013/2015
tìm số tự nhiên x biết : 1/3 + 1/6 +1/10 + .....+2/x(x+1) =2013/2015
=>2/6+2/12+2/20+...+2/x(x+1)=2013/2015
=>2(1/2.3+1/3.4+1/4.5+...+1/x(x+1)=2013/2015
=>2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
=>(1/2-1/x+1)=2013/2015:2
=>-(1/x+1)=2013/4030-1/2
=>-(1/x+1)=-(1/2015)=>x+1=2015=>x=2014
tìm số tự nhiên x biết: 1/3+1/6+1/10+...+2/x(x+1)=2013/2015
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\cdot\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}:2\)
\(\Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\)
\(\Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\Rightarrow x+1=2015\Rightarrow x=2014\)
Tìm số tự nhiên x, biết:
1/3+1/6+1/10+....+2/x(x+1)=2015/2016
Tìm x biết :1/3+1/6+1/10+...+2/x(x+1) =2015/2017