tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.......+\frac{3}{40.43}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho S =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}+\frac{3}{43.46}\)
Hãy C/M S<1
Ta có\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
= \(1-\frac{1}{46}\)
Vì \(1-\frac{1}{46}< 1\)nên S<1
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+.......+\frac{3}{43\cdot46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
Ta có \(1-\frac{1}{46}< 1\)=> S < 1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
vì \(1-\frac{1}{46}< 1\Rightarrow S< 1\)
Cho S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{40.43}+\frac{3}{43.46}.\)
Hãy chứng tỏ rằng S<1
\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
Có \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\)
nhan xet:3/1.4=1/1-1/4
3/4.7=1/4-1/7
3/7.10=1/7-1/10
.....................
3/40.43=1/40-1/43
3/43.46=1/43-1/46
S=1/1-1/3+1/3-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=46/46-1/46
S=45/46<1
vay s<1
S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
chứng tỏ rằng S<1
S= 1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+|1/43-1/46
S= 1-1/46
S= 45/46<1
vậy S<1
duyệt đi
S= 1- 1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S= 1+ (1/4-1/4)+(1/7-1/7)+...+(1/43-1/43)-1/46
S= 1-1/46= 45/46<1
Suy ra S<1
Cho S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{40.43}+\frac{3}{43.46}\)
Hãy chứng minh S <1
Bài 5: Cho S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\). Hãy chứng tỏ rằng S < 1.
Cho \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\).Hãy chứng tỏ rằng S < 1
Có \(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{43.46}\)
Sẽ có: \(S=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{43.46}\)
\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+........+\frac{1}{43}-\frac{1}{46}\)
\(S=\frac{1}{1}-\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+\left(-\frac{1}{10}+\frac{1}{10}\right)+....+\left(-\frac{1}{43}+\frac{1}{43}\right)-\frac{1}{46}\)
\(S=\frac{1}{1}-0+0+0+0+......+0+0-\frac{1}{46}\)
\(S=\frac{1}{1}-\frac{1}{46}=\frac{45}{46}\)
Vì có: \(\frac{45}{46}<1\) nên \(S<1\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
\(S=\frac{45}{46}\)
=> \(\frac{45}{46}<\frac{46}{46}=1\)
=> S<1
Cho \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) . Hãy chứng tỏ rằng \(S< 1\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
ta có
\(\frac{3}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\)
.....
\(\frac{3}{43.46}=\frac{1}{43}-\frac{1}{46}\)
( mình nghĩ cậu chưa đc làm dạng như này nên ghi ra , lần sau có gặp mà biết cách làm r thì bỏ bước trên đi cx đc nha)
\(=>S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=>S=1-\frac{1}{46}< 1\)(dpcm
Tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
Trả lời
3/1.4+3/4.7+3/7.10
=3/1.3/10
=3/10
Chúc bạn học tốt #
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}\)
\(=\frac{9}{10}\)
tính nhanh
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
S = 3 - \(\frac{3}{100}\)= \(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)
S=3/1.4+3/4.7+3/7.10+.....+3/97.100
S=1/1-1/4+1/4-1/7+1/7-1/10+.....+1/97-1/100
S=1-1/100
S=99/100