Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LS
Xem chi tiết
ND
3 tháng 12 2017 lúc 20:29

gọi 1+2^2+2^3+....+2^100 là A

TA co : 

2A=2.(2^0+2^1+....+2^100)

2A= 2^1+2^2+2^3+....+2^101

2A-A=A  suy ra A= 2^101-1 

SUY RA  1+2^2+.......+2^100=2^101-1

Bình luận (0)
VV
Xem chi tiết
TN
17 tháng 4 2016 lúc 19:10

đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2

đặt B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

ủng hộ nhé

Bình luận (0)
TM
Xem chi tiết
PN
Xem chi tiết
KZ
31 tháng 3 2016 lúc 17:05

Hình như sai đề thì phải chứ mk làm ko đc !!!

Bình luận (0)

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

Bình luận (0)
H24
Xem chi tiết
NO
14 tháng 5 2018 lúc 20:34

có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100

Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100

=99/100

=> 1/3^2+1/4^2+...+1/100^2<99/100<1

=> đpcm

UNDERSTAND ???

Bình luận (0)
LK
15 tháng 5 2018 lúc 9:40

đặt A= biểu thức trên

tao có 

A<1/2.3+1/3.4+...+1/99.100

A<1/2-1/3+1/3-1/4+...+1/99-1/100

A<1/2-1/100<1/2

SUY RA A<1/2(DPCM)

Bình luận (0)
LL
Xem chi tiết
TL
Xem chi tiết
NN
Xem chi tiết
NN
18 tháng 2 2020 lúc 16:56

ai lam day du dau tien minh se k cho nha

Bình luận (0)
 Khách vãng lai đã xóa
NN
18 tháng 2 2020 lúc 16:57

minh can gap lam

Bình luận (0)
 Khách vãng lai đã xóa
.
18 tháng 2 2020 lúc 17:06

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết