chung to rang 1/2^2+1/3^2+1/4^2+....+1/100^2 <1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chung to rang:
1 + 2^2 + 2^3 + 2^4 +.....+ 2^100 = 2^101 - 1
gọi 1+2^2+2^3+....+2^100 là A
TA co :
2A=2.(2^0+2^1+....+2^100)
2A= 2^1+2^2+2^3+....+2^101
2A-A=A suy ra A= 2^101-1
SUY RA 1+2^2+.......+2^100=2^101-1
Chung to rang:1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2 be hon 2
đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2
đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
ủng hộ nhé
cho P=1+1/2+1/3+1/4+...+1/2^100-1. chung to rang P<50
chung minh rang : 1 / 2 ^ 2 + 1 / 3 ^ 2 + 1 / 4 ^ 2 + . . . + 1 / 100 ^ 2 < 99 / 100
Hình như sai đề thì phải chứ mk làm ko đc !!!
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
chung minh rang 1/3^2+1/4^2+1/5^2+...+1/100^2<1/2
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
đặt A= biểu thức trên
tao có
A<1/2.3+1/3.4+...+1/99.100
A<1/2-1/3+1/3-1/4+...+1/99-1/100
A<1/2-1/100<1/2
SUY RA A<1/2(DPCM)
chung minh rang 1-1/2^2-1/3^3-1/4^2-....-1/100^2>1/100
please,who can help me?
chung minh rang :
1/3^2+1/4^2+1/5^2+1/6^2+...+1/100^2<1/2
chung minh rang 1\2 mu 2+1\3 mu 2+1\4 mu2+...+1\100 mu 2 < 1
ai lam day du dau tien minh se k cho nha
minh can gap lam
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).
chung minh rang 1/2!+2/3!+3/4!+....+99/100!<1