Cho a ∈ N, chứng tỏ rằng a^2+ a + 2021 không là bội của 5
Cho A thuộc bội con N, chứng tỏ rằng a^2+a+2021 không là bội của 5
a thuộc N nên a có dạng 5k,5k+1,5k+2,5k+3,5k+4
với a=5k thì a^2 và a chia hết cho 5 mà 2021 ko chia hết nên tổng ko chia hết
với a=5k+1 =>a2+a+2021=(5k+1)2+5k+1+2021=25k2+15k+2023 không chia hết cho 5
bạn làm tương tự với mấy cây còn lại, ko đc thì nói nhé
chúc bạn học tốt
NNBC-1/1/2022
Cho a ∈ N, chứng tỏ rằng a2 + a + 2021 không là bội của 5
chứng tỏ a^2 + a + 2021 không là bội của 5
bài này hôm nọ mk chx lm đc.
Thông cảm T _ T
Chứng tỏ rằng
a, (a+2021).(a+2020) là bội của 2 với mọi số tự nhiên a
ta có a+2021 và a+2020 là hai số tự nhiên liên tiếp
nên chắc chắc có 1 số chẵn trong hai số đó
vậy tích (a+2021)(a+2020) là số chẵn, hay là bội của 2
a) chứng tỏ rằng: số aaaaaa là bội của 37037
b) chứng tỏ rằng: giá trị của biểu thức
B=\(3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\) là bội của 273
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
Cho A= 2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 . . . + 2022/2021^2+2021. Chứng tỏ rằng A không phải là số tự nhiên. GIÚP MIK VỚI MN
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
a. Cho A=4+22+23+....+22005.Chứng tỏ rằng A là một lũy thừa của cơ số 2.
b. Cho B=5+52+53+...+52021.Chứng tỏ rằng B+8 không thể là số bình phương của một số tự nhiên.
Bạn nào giúp mình giải bài này với
:((((
Help me
\(A=4+2^2+2^3+...+2^{2005}\)
\(2A=4+2^2+2^3+...+2^{2006}\)
\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)
\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)
\(A=2^{2006}\)
Vậy A là 1 luỹ thừa của cơ số 2
\(B=5+5^2+...+5^{2021}\)
\(5B=5^2+5^3+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8\)
\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)
\(B+8=\frac{5^{2022}-5+32}{4}\)
\(B+8=\frac{5^{2022}+27}{4}\)
=> B + 8 k thể là số b/ph của 1 số tn
Cho a, b, c là các số nguyên thỏa mãn a\(^{2019}+b^{2020}+c^{2021}\) là bội của 6. Chứng minh rằng: a\(^{2021}+b^{2022}+c^{2023}\) cũng là bội của 6.