Chứng minh trong 2022 số tự nhiên bất kì luôn tồn tại 4 số có cùng số dư khi chia cho 537
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng trong 8 số tự nhiên bất kì khi chia cho 15 có số dư lẻ luôn tồn tại hai số có hiệu chia hết cho 15
Theo đề bài các số dư ={1;3;5;7}
=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b
\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong bốn số tự nhiên bất kỳ luôn tồn tại hai số có cùng số dư khi chia cho ba
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng và hiệu chia hết cho 17
1.Chứng minh rằng trong 6 số tự nhiên bất kì luôn tồn tại 1 số chia hết cho 6 và vài số có tổng chia hết cho 6
2.Cho 21 số nguyên dương bất kì khác nhau không vượt quá 40 .Chứng minh ràng trong 21 số đó luôn tồn tại 2 số có tổng=41
Chứng minh rằng trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)
Và ta có \(n+2016-n=2015⋮2015\)
Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Quên, phải lấy \(n+2015-n=2015\) chứ.
Và không có số \(n+2016\), chỉ có \(n+2015\)là hết.
chứng minh rằng trong 39 số tự nhiên liên tiếp bất kì luôn tồn tại 1 số có tổng các chữ số chia hết cho 11
Lê Quang Thắng với Nguyến Vũ Hoàng Trung sao lại chửi Nhóc Song Ngư vậy hai bạn giỏi thì lám đầy đủ ra xem nào
hai bạn làm đi để được olm chấp nhận câu trả lời chính xác